A method for constructing self-dual codes over Z2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^m}$$\end{document}

被引:0
作者
Sunghyu Han
机构
[1] Korea University of Technology and Education,School of Liberal Arts
关键词
Building-up construction; Self-dual code; code; code; 94B05; 94B60;
D O I
10.1007/s10623-013-9907-3
中图分类号
学科分类号
摘要
There are several methods for constructing self-dual codes over various rings. Among them, the building-up method is a powerful method, and it can be applied to self-dual codes over finite fields and several rings. Recently, Alfaro and Dhul-Qarnayn (Des Codes Cryptogr, doi:10.1007/s10623-013-9873-9) proposed a method for constructing self-dual codes over Fq[u]/(ut)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{q}[u]/(u^{t})$$\end{document}. Their approach is a building-up approach that uses the matrix form. In this paper, we use the matrix form to develop a building-up approach for constructing self-dual codes over Z2m(m≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}_{2^m} (m \ge 1)$$\end{document}, which have not been considered thus far.
引用
收藏
页码:253 / 262
页数:9
相关论文
共 33 条
  • [1] Bosma W.(1997)The Magma algebra system. I. The user language J. Symb. Comput. 24 235-265
  • [2] Cannon J.(1980)On the enumeration of self-dual codes J. Comb. Theory Ser. A 28 26-53
  • [3] Playoust C.(1999)Type II self-dual codes over finite rings and even unimodular lattices J. Algebr. Comb. 9 233-250
  • [4] Conway J.H.(2006)Self-dual codes over $${\mathbb{Z}}_8$$ Z 8 and $${\mathbb{Z}}_9$$ Z 9 Des. Codes Cryptogr. 41 235-249
  • [5] Pless V.(2010)Self-dual codes over commutative Frobenius rings Finite Fields Appl. 16 14-26
  • [6] Dougherty S.T.(2010)Constructions of self-dual codes over finite commutative chain rings Int. J. Inf. Coding Theory 1 171-190
  • [7] Gulliver T.A.(2009)On circulant self-dual codes over small fields Des. Codes Cryptogr. 52 57-81
  • [8] Harada M.(2012)Construction of self dual codes over $$F_2+uF_2$$ F 2 + u F 2 Bull. Korean Math. Soc. 49 135-143
  • [9] Dougherty S.T.(2005)On the classification and enumeration of self-dual codes Finite Fields Appl. 11 451-490
  • [10] Gulliver T.A.(2004)Euclidean and Hermitian self-dual MDS codes over large finite fields J. Comb. Theory Ser. A. 105 79-95