Spectra of Semi-Infinite Quantum Graph Tubes

被引:0
作者
Stephen P. Shipman
Jeremy Tillay
机构
[1] Louisiana State University,Department of Mathematics
[2] Rice University,Department of Computational and Applied Mathematics
来源
Letters in Mathematical Physics | 2016年 / 106卷
关键词
quantum graph; spectrum; Floquet modes; embedded eigenvalue; nanotube; complex dispersion relation; 34A33; 34B09; 34B45; 34B60; 34L10; 34L25; 47A75; 47B25; 81U30;
D O I
暂无
中图分类号
学科分类号
摘要
The spectrum of a semi-infinite quantum graph tube with square period cells is analyzed. The structure is obtained by rolling up a doubly periodic quantum graph into a tube along a period vector and then retaining only a semi-infinite half of the tube. The eigenfunctions associated to the spectrum of the half-tube involve all Floquet modes of the full tube. This requires solving the complex dispersion relation D(λ,k1,k2)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D(\lambda,k_1,k_2)=0}$$\end{document} with (k1,k2)∈(C/2πZ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(k_1,k_2)\in(\mathbb{C}/2\pi\mathbb{Z})^2}$$\end{document} subject to the constraint ak1+bk2≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a k_1 + b k_2 \equiv 0}$$\end{document} (mod 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\pi}$$\end{document}), where a and b are integers. The number of Floquet modes for a given λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda\in\mathbb{R}}$$\end{document}  is  2maxa,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\max\left\{ a, b \right\}}$$\end{document}. Rightward and leftward modes are determined according to an indefinite energy flux form. The spectrum may contain eigenvalues that depend on the boundary conditions, and some eigenvalues may be embedded in the continuous spectrum.
引用
收藏
页码:1317 / 1343
页数:26
相关论文
共 16 条
[1]  
Cattaneo C.(1997)The spectrum of the continuous Laplacian on a graph Monatshefte für Mathematik 124 215-235
[2]  
Goldstein C.I.(1969)Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I Trans. Am. Math. Soc. 135 1-31
[3]  
Iantchenko A.(2010)Schrödinger operator on the zigzag half-nanotube in magnetic field Math. Model. Nat. Phenom. 5 175-197
[4]  
Korotyaev E.(2007)Schrödinger operators on zigzag nanotubes Annales Henri Poincaré 8 1151-1176
[5]  
Korotyaev E.(2005)Quantum graphs II. Some spectral properties of quantum and combinatorial graphs J. Phys. A 38 4887-4900
[6]  
Lobanov I.(2007)On the spectra of carbon nano-structures Commun. Math. Phys. 275 805-826
[7]  
Kuchment P.(1999)Structural properties of junctions between two carbon nanotubes Appl. Phys. A 68 263-266
[8]  
Kuchment P.(2014)Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators Commun. Math. Phys. 332 605-626
[9]  
Post O.(2010)A discrete model for resonance near embedded bound states IEEE Photonics J. 2 911-923
[10]  
Lambin P.(undefined)undefined undefined undefined undefined-undefined