A randomized multi-index sequential Monte Carlo method

被引:0
作者
Xinzhu Liang
Shangda Yang
Simon L. Cotter
Kody J. H. Law
机构
[1] University of Manchester,School of Mathematics
来源
Statistics and Computing | 2023年 / 33卷
关键词
Bayesian inverse problems; Sequential Monte Carlo; Multi-index Monte Carlo;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.
引用
收藏
相关论文
共 75 条
  • [1] Bernardo J(1998)Regression and classification using Gaussian process priors Bayesian Stat. 6 475-1440
  • [2] Berger J(2017)Multilevel sequential Monte Carlo samplers Stoch. Process. Appl. 127 1417-786
  • [3] Dawid A(2018)Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals SIAM/ASA J. Uncertain. Quantif. 6 762-787
  • [4] Beskos A(2021)Unbiased inference for discretely observed hidden Markov model diffusions SIAM/ASA J. Uncertai. Quantif. 9 763-446
  • [5] Jasra A(2013)MCMC methods for functions: modifying old algorithms to make them faster Stat. Sci. 28 424-436
  • [6] Law KJH(2006)Sequential Monte Carlo samplers J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68 411-563
  • [7] Beskos A(2013)Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm Stat. Sci. 28 542-1108
  • [8] Jasra A(2015)A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow SIAM/ASA J. Uncertain. Quantif. 3 1075-389
  • [9] Law KJH(2007)Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow ACM Trans. Math. Softw. (TOMS) 33 14-es-4792
  • [10] Chada NK(2015)Multilevel Monte Carlo methods Acta Numer 24 259-806