Threshold Conditions for a Non-Autonomous Epidemic System Describing the Population Dynamics of Dengue

被引:0
|
作者
F. A. B. Coutinhoa
M. N. Burattinia
L. F. Lopeza
E. Massada
机构
[1] The University of São Paulo and LIM 01/HCFMUSP,School of Medicine
[2] London University,London School of Hygiene and Tropical Medicine
来源
关键词
Dengue; Vector-borne; Overwinter; Vertical transmission; Modeling; Non-autonomous systems;
D O I
暂无
中图分类号
学科分类号
摘要
A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{R}$$\end{document}, is less than 1, the disease does not invade the populations and when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{R}$$\end{document} is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.
引用
收藏
页码:2263 / 2282
页数:19
相关论文
共 50 条
  • [41] ATTRACTORS AND PULLBACK DYNAMICS FOR NON-AUTONOMOUS PIEZOELECTRIC SYSTEM WITH MAGNETIC AND THERMAL EFFECTS
    Freitas, Mirelson M.
    Ramos, Anderson J. A.
    Dos Santos, Manoel J.
    Fonseca, Eraldo R. N.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (11) : 3729 - 3749
  • [42] Chaotic Dynamics of Non-Autonomous Nonlinear System for a Sandwich Plate with Truss Core
    Zhang, Dongmei
    Li, Feng
    MATHEMATICS, 2022, 10 (11)
  • [43] Dynamics of a non-autonomous ratio-dependent predator-prey system
    Fan, M
    Wang, Q
    Zou, XF
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 97 - 118
  • [44] SUFFICIENT CONDITIONS FOR THE COMPLETE CONTROLLABILITY OF NON-AUTONOMOUS SYSTEMS
    ZAKHAROV, GK
    SENYAVIN, MM
    DIFFERENTIAL EQUATIONS, 1981, 17 (03) : 288 - 293
  • [45] An eco-epidemic model with seasonal variability: a non-autonomous model
    Jyoti Gupta
    Joydip Dhar
    Poonam Sinha
    Arabian Journal of Mathematics, 2022, 11 : 521 - 538
  • [46] An eco-epidemic model with seasonal variability: a non-autonomous model
    Gupta, Jyoti
    Dhar, Joydip
    Sinha, Poonam
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 521 - 538
  • [47] Fractional non-autonomous evolution equation with nonlocal conditions
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) : 955 - 973
  • [48] Sufficient conditions for the oscillation of non-autonomous difference equations
    Meng Q.
    Yan J.-R.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (2) : 325 - 332
  • [49] Maximal regularity for non-autonomous Robin boundary conditions
    Arendt, Wolfgang
    Monniaux, Sylvie
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1325 - 1340
  • [50] Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model
    Liu, Qun
    Jiang, Daqing
    Shi, Ningzhong
    Hayat, Tasawar
    Alsaedi, Ahmed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 837 - 845