Group algebras and coding theory

被引:6
作者
Guerreiro M. [1 ]
机构
[1] Departamento de Matemática, Universidade Federal de Viçosa, Viçosa, CEP 36570-000, MG
关键词
Coding theory; Group algebra; Idempotents;
D O I
10.1007/s40863-016-0040-x
中图分类号
学科分类号
摘要
Group algebras have been used in the context of Coding Theory since the beginning of the latter, but not in its full power. The article of Ferraz and Polcino Milies entitled Idempotents in group algebras and minimal abelian codes (Finite Fields Appl 13(2):382–393, 2007) gave origin to many thesis and papers linking these two subjects. In these works, the techniques of group algebras are mainly brought into play for the computing of the idempotents that generate the minimal codes and the minimum weight of such codes. In this paper I present a survey on the main results proceeding from applications of that seminal work. © 2016, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:346 / 371
页数:25
相关论文
共 78 条
[11]  
Bernal J.J., del Rio A., Simon J.J., An intrinsical description of group codes, Des. Codes Cryptogr., 51, 3, pp. 289-300, (2009)
[12]  
Biglieri E., Elia M., On the construction of group block codes, Ann. Télécommun., 50, 9-10, pp. 817-823, (1995)
[13]  
Broche O., del Rio A., Wedderburn decomposition of finite group algebras, Finite Fields Appl., 13, pp. 71-79, (2007)
[14]  
Calderbank A.R., Sloane N.J.A., Modular and p-adic codes, Des. Codes Cryptogr., 6, pp. 21-35, (1995)
[15]  
Chalom G., Ferraz R., Guerreiro M., Polcino Milies C., Minimal binary abelian codes of length p n q n, (2012)
[16]  
Chalom G., Ferraz R.A., Polcino Milies C., Essential idempotents and simplex code, J. Algebra Comb Discrete Struct. Appl.
[17]  
Conway J.H., Sloane N.J.A., Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A, 62, pp. 30-45, (1993)
[18]  
Dinh H.Q., Complete distances of all negacyclic codes of length 2 <sup>s</sup> over Z2a, IEEE Trans. Inf. Theory, 53, pp. 147-161, (2007)
[19]  
Dinh H.Q., Lopez-Permouth S.R., Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50, pp. 1728-1744, (2004)
[20]  
Dinh H.Q., Lopez-Permouth S.R., On the equivalence of codes over finite rings, AAECC, 15, 1, pp. 37-50, (2004)