Group algebras and coding theory

被引:6
作者
Guerreiro M. [1 ]
机构
[1] Departamento de Matemática, Universidade Federal de Viçosa, Viçosa, CEP 36570-000, MG
关键词
Coding theory; Group algebra; Idempotents;
D O I
10.1007/s40863-016-0040-x
中图分类号
学科分类号
摘要
Group algebras have been used in the context of Coding Theory since the beginning of the latter, but not in its full power. The article of Ferraz and Polcino Milies entitled Idempotents in group algebras and minimal abelian codes (Finite Fields Appl 13(2):382–393, 2007) gave origin to many thesis and papers linking these two subjects. In these works, the techniques of group algebras are mainly brought into play for the computing of the idempotents that generate the minimal codes and the minimum weight of such codes. In this paper I present a survey on the main results proceeding from applications of that seminal work. © 2016, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:346 / 371
页数:25
相关论文
共 78 条
[1]  
Arora S.K., Pruthi M., Minimal codes of prime power length, Finite Fields Appl., 3, pp. 99-113, (1997)
[2]  
Arora S.K., Pruthi M., Minimal cyclic codes of length 2 p<sup>n</sup>, Finite Fields Appl., 5, pp. 177-187, (1999)
[3]  
Assuena S., Códigos Metacíclicos, Tese De Doutorado, Instituto De Matemática E Estatística Da Universidade De São Paulo, (2013)
[4]  
Bakshi G.K., Raka M., Minimal cyclic codes of length 2 <sup>n</sup>, Ranchi Univ. Math. J., 33, pp. 1-18, (2002)
[5]  
Bakshi G.K., Raka M., Minimal cyclic codes of length p<sup>n</sup>q, Finite Fields Appl., 9, pp. 432-448, (2003)
[6]  
Bakshi G.K., Raka M., Sharma A., Idempotent generators of irreducible cyclic codes, Number Theory and Discrete Geometry. RMS Lecture Notes Series, Vol. 6, pp. 13-18, (2008)
[7]  
Bastos G.T., Guerreiro M., Comparação de técnicas para o cálculo de idempotentes geradores de códigos cíclicos. Anais do XXXV CNMAC, Natal-RN, Brasil, 2014, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3, 1, (2015)
[8]  
Bastos G.T., Guerreiro M., Idempotents generators for minimal cyclic codes of length p n q, Coding Theory and Applications, CIM Series in Mathematical Sciences, pp. 345-352, (2015)
[9]  
Berman S.D., Semisimple cyclic and abelian codes, II, Kybernetika, 3, pp. 21-30, (1967)
[10]  
Berman S.D., On the theory of group codes, Kibernetika, 3, pp. 31-39, (1967)