Local properties of topological spaces and remainders in compactifications

被引:0
作者
A. V. Arhangel’skii
机构
[1] Moscow State Pedagogical University,
来源
Acta Mathematica Hungarica | 2019年 / 158卷
关键词
remainder; compactification; homogeneous; locally metrizable; locally separable; Lindelöf ; -space; charming space; countable type; locally Čech-complete; primary 54A25; secondary 54B05;
D O I
暂无
中图分类号
学科分类号
摘要
What can we say about the properties of remainders of spaces which have a certain property P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document} locally? Below, a rather general approach to this question is developed. In particular, we consider remainders of locally metrizable spaces and show that they are rarely homogeneous: if X is a locally metrizable space with a homogeneous remainder Y, then Y is a charming space (Corollary 4.11). We also show (Corollary 4.9) that if X is a locally separable locally metrizable space with a homogeneous remainder Y in a compactification bX, then Y is a Lindelöf p-space. If in addition X is nowhere locally compact, then X is also a Lindelöf p-space. See also Theorem 5.6.
引用
收藏
页码:306 / 317
页数:11
相关论文
共 14 条
[1]  
Arhangel'skii AV(2005)Remainders in compactifications and generalized metrizability properties Topology Appl. 150 79-90
[2]  
Arhangel'skii AV(2009)A study of remainders of topological groups Fund. Math. 203 165-179
[3]  
Arhangel'skii AV(2011)Remainders of metrizable spaces and a generalization of Lindelöf Fund. Math. 215 87-100
[4]  
Arhangel'skii AV(2013)-spaces Fund. Math. 220 71-81
[5]  
Arhangel'skii AV(2013)Remainders of metrizable and close to metrizable spaces Comment. Math. Univ. Carolin. 54 121-139
[6]  
Arhangel'skii AV(2017)A generalization of Čech-complete spaces and Lindelöf Hacettepe J. Math. Stat. 46 1-8
[7]  
Arhangel'skii AV(2011)-spaces Topology Appl. 158 1381-1389
[8]  
Choban MM(1977)Remainders of locally Čech-complete spaces and homogeneity Proc. Amer. Math. Soc. 64 139-145
[9]  
van Douwen EK(1958)Some generalizations of the concept of a Duke Math. J. 25 83-106
[10]  
Tall F(1969)-space Fund. Math. 61 169-192