Menger (Nöbeling) Manifolds versus Hilbert Cube (Space) Manifolds – A Categorical Comparison

被引:0
作者
Alex Chigogidze
V. V. Fedorchuk
机构
[1]  University of Saskatchewan,
[2] Saskatoon,undefined
[3] SK,undefined
[4] Canada,undefined
[5]  Moscow State University,undefined
[6] Russia,undefined
来源
Monatshefte für Mathematik | 2000年 / 130卷
关键词
1991 Mathematics Subject Classification: 57Q05; 55P65; Key words: Menger manifold; Hilbert cube manifold; n-homotopy; Postnikov functor;
D O I
暂无
中图分类号
学科分类号
摘要
 We show that the n-homotopy category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of connected (n+1)-dimensional Menger manifolds is isomorphic to the homotopy category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of connected Hilbert cube manifolds whose k-dimensional homotopy groups are trivial for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:89 / 97
页数:8
相关论文
empty
未找到相关数据