Some new quantum codes from constacyclic codes

被引:0
作者
Shanqi Pang
Miaomiao Zhang
Mengqian Chen
Chaomeng Zhang
机构
[1] Henan Normal University,College of Mathematics and Information Science
来源
Quantum Information Processing | / 23卷
关键词
Hermitian construction; Constacyclic codes; Quantum codes; Quantum MDS codes;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, let q be an odd prime power. Based on new constacyclic codes which contain their Hermitian duals and Hermitian construction, we construct some classes of quantum MDS codes and quantum codes. When q≡1mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\ \textrm{mod}\ 4$$\end{document}, x and y are a divisor of q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document} and q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document}, respectively, we can construct a class of new quantum codes of length n=2xyq2m-1q2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2xy\frac{q^{2m}-1}{q^2-1}$$\end{document} for odd x,y,m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y,m\ge 3$$\end{document}. These codes have larger dimensions than existing codes. In addition, for q with the form 2am±(x2+y2)a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2am\pm \sqrt{(x^2+y^2)a-1}$$\end{document} and odd x, y, a with gcd(x,y)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gcd(x,y)=1$$\end{document}, we get some quantum MDS codes of length n=q2+1a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\frac{q^2+1}{a}$$\end{document}.
引用
收藏
相关论文
共 122 条
  • [1] Li S(2016)Pseudo-cyclic codes and the construction of quantum MDS codes IEEE Trans. Inf. Theory 62 1703-1710
  • [2] Xiong M(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inf. Theory 44 1369-1387
  • [3] Ge G(2000)Quantum twisted codes J. Combin. Des. 8 174-188
  • [4] Calderbank AR(2005)Quantum codes from concatenated algebraic-geometric codes IEEE Trans. Inf. Theory 51 2915-2920
  • [5] Rains EM(1999)On binary constructions of quantum codes IEEE Trans. Inf. Theory 45 2495-2498
  • [6] Shor PW(2002)Quantum codes IEEE Trans. Inf. Theory 48 2384-2391
  • [7] Sloane NJA(2004) and Int. J. Quantum Inf. 2 55-64
  • [8] Bierbrauer J(2010) exist IEEE Trans. Inf. Theory 56 4735-4740
  • [9] Edel Y(2014)On optimal quantum codes IEEE Trans. Inf. Theory 60 2921-2925
  • [10] Chen H(2011)Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes IEEE Trans. Inf. Theory 57 5551-5554