The Galerkin boundary element method for transient Stokes flow

被引:0
作者
Young Ok Choi
Johannes Tausch
机构
[1] Southern Methodist University,Department of Mathematics
来源
Advances in Computational Mathematics | 2017年 / 43卷
关键词
Transient stokes flow; Boundary element method; Galerkin method time dependent problem; Error analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Since the fundamental solution for transient Stokes flow in three dimensions is complicated it is difficult to implement discretization methods for boundary integral formulations. We derive a representation of the Stokeslet and stresslet in terms of incomplete gamma functions and investigate the nature of the singularity of the single- and double layer potentials. Further, we give analytical formulas for the time integration and develop Galerkin schemes with tensor product piecewise polynomial ansatz functions. Numerical results demonstrate optimal convergence rates.
引用
收藏
页码:473 / 493
页数:20
相关论文
共 28 条
[1]  
Arnold D(1989)Coercivity of the single layer heat potential J Comput. Math. 7 100-104
[2]  
Noon P(2015)Boundary integral solvers for an evolutionary exterior Stokes problem SIAM J. Numer. Anal. 53 1370-1392
[3]  
Bacuta C(1990)Boundary integral operators for the heat equation Integral Equations Operator Theory 13 498-552
[4]  
Hassell ME(1977)Singular integrals and hydrodynamic potentials Amer. J. Math. 99 601-625
[5]  
Hsiao GC(2012)Integral equation methods for unsteady Stokes flow in two dimensions SIAM J. Sci Comput. 34 A2197-A2219
[6]  
Sayas F-J(2015)An efficient Galerkin boundary element method for the transient heat equation SIAM J. Sci Comput 37 A1554-A1576
[7]  
Costabel M(2014)Fast Galerkin method for parabolic space-time boundary integral equations J Comput. Phys. 258 15-30
[8]  
Fabes EB(1980)Über die instationären hydrodynamischen Potentiale ZAMM 60 T267-269
[9]  
Lewis JE(1991)Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders Amer. J Math. 113 293-373
[10]  
Riviere NM(2007)A fast method for solving the heat equation by layer potentials J Comput. Phys. 224 956-969