Skew Carleson Measures in Strongly Pseudoconvex Domains

被引:0
作者
Marco Abate
Jasmin Raissy
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Université de Toulouse,Institut de Mathématiques de Toulouse, UMR5219, CNRS, UPS IMT
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Carleson measure; Toeplitz operator; Strongly pseudoconvex domain; Weighted Bergman space; Primary 32A36; Secondary 32A25; 32Q45; 32T15; 46E22; 46E15; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
Given a bounded strongly pseudoconvex domain D in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} with smooth boundary, we give a characterization through products of functions in weighted Bergman spaces of (λ,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\gamma )$$\end{document}-skew Carleson measures on D, with λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} and γ>1-1n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1-\frac{1}{n+1}$$\end{document}.
引用
收藏
页码:405 / 429
页数:24
相关论文
共 24 条
  • [1] Abate M(2012)Toeplitz operators and Carleson measures in strongly pseudoconvex domains J. Funct. Anal. 263 3449-3491
  • [2] Raissy J(2011)Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains J. Lond. Math. Soc. 83 587-605
  • [3] Saracco A(2015)A subordination principle. Applications North West. Eur. J. Math. 1 23-45
  • [4] Abate M(1962)Interpolations by bounded analytic functions and the corona problem Ann. Math. 76 547-559
  • [5] Saracco A(1995)Composition operators between Bergman spaces on convex domains in J. Oper. Theory 33 363-369
  • [6] Amar E(1982)A Carleson measure theorem for the Bergman space on the ball J. Oper. Theory 7 157-165
  • [7] Carleson L(1969)Extension of a theorem of Carleson Bull. Am. Math. Soc. 75 143-146
  • [8] Cima JA(1975)A Carleson measure theorem for Bergman spaces Proc. Am. Math. Soc. 52 237-241
  • [9] Cima JA(1965)-estimates and existence theorems for the Acta Math. 113 89-152
  • [10] Wogen WR(2016)-operator Math. Nachr. 289 1237-1254