On Meromorphic Solutions of Non-linear Difference Equations

被引:0
|
作者
Ran-Ran Zhang
Zhi-Bo Huang
机构
[1] Guangdong University of Education,Department of Mathematics
[2] South China Normal University,School of Mathematical Sciences
来源
Computational Methods and Function Theory | 2018年 / 18卷
关键词
Nevanlinna theory; Meromorphic solution; Entire solution; Difference equation; 30D35; 39A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the theory of linear algebra, we investigate the non-linear difference equation of the following form in the complex plane: f(z)n+p(z)f(z+η)=β1eα1z+β2eα2z+⋯+βseαsz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(z)^n + p(z)f(z+\eta ) = \beta _1e^{\alpha _1z}+\beta _2e^{\alpha _2z}+\cdots +\beta _se^{\alpha _sz}, \end{aligned}$$\end{document}where n, s are the positive integers, p(z)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(z)\not \equiv 0$$\end{document} is a polynomial and η,β1,…,βs,α1,…,αs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta , \beta _1, \ldots , \beta _s, \alpha _1, \ldots , \alpha _s$$\end{document} are the constants with β1…βsα1…αs≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1 \ldots \beta _s\alpha _1 \ldots \alpha _s\ne 0$$\end{document}, and show that this equation just has meromorphic solutions with hyper-order at least one when n≥2+s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2+s$$\end{document}. Other cases are also obtained.
引用
收藏
页码:389 / 408
页数:19
相关论文
共 50 条
  • [1] On Meromorphic Solutions of Non-linear Difference Equations
    Zhang, Ran-Ran
    Huang, Zhi-Bo
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (03) : 389 - 408
  • [2] Meromorphic solutions on the first order non-linear difference equations
    J. Li
    K. Liu
    Analysis Mathematica, 2020, 46 : 323 - 344
  • [3] Meromorphic Solutions on the First Order Non-Linear Difference Equations
    Li, J.
    Liu, K.
    ANALYSIS MATHEMATICA, 2020, 46 (02) : 323 - 344
  • [4] Meromorphic solutions of three certain types of non-linear difference equations
    Chen, Min Feng
    Huang, Zhi Bo
    Gao, Zong Sheng
    AIMS MATHEMATICS, 2021, 6 (11): : 11708 - 11722
  • [5] Meromorphic Solutions of Some Complex Non-Linear Difference Equations
    X.-G. Qi
    L.-Z. Yang
    Analysis Mathematica, 2021, 47 : 405 - 419
  • [6] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    MingXin Zhao
    Zhigang Huang
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1444 - 1466
  • [7] MEROMORPHIC SOLUTIONS OF SOME COMPLEX NON-LINEAR DIFFERENCE EQUATIONS
    Qi, X. -G.
    Yang, L. -Z.
    ANALYSIS MATHEMATICA, 2021, 47 (02) : 405 - 419
  • [8] MEROMORPHIC SOLUTIONS OF SOME NON-LINEAR DIFFERENCE EQUATIONS WITH THREE EXPONENTIAL TERMS
    Chen, Min-feng
    Gao, Zong-sheng
    Huang, Xiao-min
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) : 745 - 762
  • [9] VALUE DISTRIBUTION OF MEROMORPHIC SOLUTIONS OF CERTAIN NON-LINEAR DIFFERENCE EQUATIONS
    Chen, Minfeng
    Gao, Zongsheng
    Zhang, Jilong
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1173 - 1184
  • [10] Meromorphic solutions of some non-linear q-difference equations
    Dyavanal, Renukadevi S.
    Muttagi, Jyoti B.
    Shilpa, N.
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 53 - 62