Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems

被引:0
作者
A. Iusem
F. Lara
机构
[1] Instituto Nacional de Matemática Pura e Aplicada (IMPA),Departamento de Matemática, Facultad de Ciencias
[2] Universidad de Tarapacá,undefined
来源
Journal of Optimization Theory and Applications | 2022年 / 193卷
关键词
Proximal point algorithms; Equilibrium problems; Pseudomonotonicity; Quasiconvexity; Strong quasiconvexity;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a proximal point method for quasiconvex pseudomonotone equilibrium problems. The subproblems of the method are optimization problems whose objective is the sum of a strongly quasiconvex function plus the standard quadratic regularization term for optimization problems. We prove, under suitable additional assumptions, convergence of the generated sequence to a solution of the equilibrium problem, whenever the bifunction is strongly quasiconvex in its second argument, thus extending the validity of the convergence analysis of proximal point methods for equilibrium problems beyond the standard assumption of convexity of the bifunction in the second argument.
引用
收藏
页码:443 / 461
页数:18
相关论文
共 45 条
[1]  
Blum E(1994)From optimization and variational inequalities to equilibrium problems Math. Stud. 63 123-145
[2]  
Oettli W(2012)On a generalized proximal point method for solving equilibrium problems in Banach spaces Nonlinear Anal. 75 6457-6464
[3]  
Burachik R(2018)Equilibrium problems: existence results and applications Set-Valued Var. Anal. 26 159-177
[4]  
Kassay G(2015)A family of extragradient methods for solving equilibrium problems J. Ind. Manag. Optim. 11 619-630
[5]  
Cotrina J(2000)Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case SIAM J. Optim. 11 675-690
[6]  
García Y(2015)Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivatives J. Global Optim. 63 99-123
[7]  
Dong NTP(2021)Solving mixed variational inequalities beyond convexity J. Optim. Theory Appl. 190 565-580
[8]  
Strodiot JJ(2019)A quasiconvex asymptotic function with applications in optimization J. Optim. Theory Appl. 180 170-186
[9]  
Van NTT(2009)On certain conditions for the existence of solutions of equilibrium problems Math. Program. 116 259-273
[10]  
Nguyen VH(2019)Optimality conditions for vector equilibrium problems with applications J. Optim. Theory Appl. 180 187-206