Bilinear auto-Ba¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\ddot{\mathrm{a}}}}$$\end{document}cklund transformations and higher-order breather solutions for the (3+1)-dimensional generalized KdV-type equation

被引:0
作者
Peng-Fei Han
Taogetusang Bao
机构
[1] Inner Mongolia Normal University,College of Mathematics Science
[2] Center for Applied Mathematics Inner Mongolia,undefined
关键词
(3+1)-dimensional generalized KdV-type equation; Hirota bilinear method; Bilinear auto-B; cklund; Complex conjugate condition technique; -soliton solutions;
D O I
10.1007/s11071-022-07658-2
中图分类号
学科分类号
摘要
The (3+1)-dimensional generalized KdV-type equation has been found to model many physical, mechanical and engineering phenomena, including geophysical fluid dynamics, ocean engineering and plasma physics. Using the Hirota bilinear method, four bilinear auto-Ba¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\ddot{\mathrm{a}}}}$$\end{document}cklund transformations of this equation are derived explicitly. The hyperbolic cosine function solution and exponential function solutions are obtained by assuming different forms of solutions. Based on the N-soliton solutions, different localized wave structures interaction behaviors and relevant dynamics features are discussed and analyzed graphically by using the complex conjugate condition technique. Some conditions for the existence of hybrid solutions are summarized, including the M-order kink soliton solution, L-order breathers solution, the hybrid solution between M-order kink solitons and L-order breathers. Novel hybrid solutions for the (3+1)-dimensional generalized KdV-type equation obtained in this work can be of great importance in nonlinear sciences.
引用
收藏
页码:1709 / 1721
页数:12
相关论文
共 64 条
  • [41] Gupta RK(undefined)undefined undefined undefined undefined-undefined
  • [42] Kumar V(undefined)undefined undefined undefined undefined-undefined
  • [43] Jiwari R(undefined)undefined undefined undefined undefined-undefined
  • [44] Kumar S(undefined)undefined undefined undefined undefined-undefined
  • [45] Kumar A(undefined)undefined undefined undefined undefined-undefined
  • [46] Han PF(undefined)undefined undefined undefined undefined-undefined
  • [47] Taogetusang AM(undefined)undefined undefined undefined undefined-undefined
  • [48] Wazwaz SA(undefined)undefined undefined undefined undefined-undefined
  • [49] El-Tantawy WX(undefined)undefined undefined undefined undefined-undefined
  • [50] Ma Y(undefined)undefined undefined undefined undefined-undefined