Bilinear auto-Ba¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\ddot{\mathrm{a}}}}$$\end{document}cklund transformations and higher-order breather solutions for the (3+1)-dimensional generalized KdV-type equation

被引:0
作者
Peng-Fei Han
Taogetusang Bao
机构
[1] Inner Mongolia Normal University,College of Mathematics Science
[2] Center for Applied Mathematics Inner Mongolia,undefined
关键词
(3+1)-dimensional generalized KdV-type equation; Hirota bilinear method; Bilinear auto-B; cklund; Complex conjugate condition technique; -soliton solutions;
D O I
10.1007/s11071-022-07658-2
中图分类号
学科分类号
摘要
The (3+1)-dimensional generalized KdV-type equation has been found to model many physical, mechanical and engineering phenomena, including geophysical fluid dynamics, ocean engineering and plasma physics. Using the Hirota bilinear method, four bilinear auto-Ba¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\ddot{\mathrm{a}}}}$$\end{document}cklund transformations of this equation are derived explicitly. The hyperbolic cosine function solution and exponential function solutions are obtained by assuming different forms of solutions. Based on the N-soliton solutions, different localized wave structures interaction behaviors and relevant dynamics features are discussed and analyzed graphically by using the complex conjugate condition technique. Some conditions for the existence of hybrid solutions are summarized, including the M-order kink soliton solution, L-order breathers solution, the hybrid solution between M-order kink solitons and L-order breathers. Novel hybrid solutions for the (3+1)-dimensional generalized KdV-type equation obtained in this work can be of great importance in nonlinear sciences.
引用
收藏
页码:1709 / 1721
页数:12
相关论文
共 64 条
  • [1] Osman MS(2019)A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation Math. Methods Appl. Sci. 42 6277-6283
  • [2] Wazwaz AM(2021)Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation Nonlinear Dyn. 103 1071-1079
  • [3] Zhang RF(2021)Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves Phys. Lett. A 405 41-740
  • [4] Li MC(2021)Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system Chaos Solitons Fract. 147 412-360
  • [5] Yin HM(2019)Lump-type solutions and interaction phenomenon to the bidirectional Sawada-Kotera equation Pramana-J. Phys. 92 733-465
  • [6] Shen Y(2020)An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model Eur. Phys. J. Plus 135 347-4213
  • [7] Tian B(2018)New nonautonomous combined multi-wave solutions for (2+1)-dimensional variable coefficients KdV equation Nonlinear Dyn. 93 458-1216
  • [8] Liu SH(2005)The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions Appl. Math. Comput. 170 4201-464
  • [9] Gao XY(2020)Breather wave solutions for the Kadomtsev-Petviashvili equation with variable coefficients in a fluid based on the variable-coefficient three-wave approach Math. Meth. Appl. Sci. 43 1209-1903
  • [10] Guo YJ(2018)Darboux transformation and nonautonomous solitons for a modified Kadomtsev-Petviashvili equation with variable coefficients Comput. Math. Appl. 75 455-2530