On Indicated Chromatic Number of Graphs

被引:0
作者
S. Francis Raj
R. Pandiya Raj
H. P. Patil
机构
[1] Pondicherry University,Department of Mathematics
[2] National Institute of Technology,Department of Mathematics
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Indicated coloring; Uniquely colorable graphs; Color critical graphs; Mycielski graphs; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Indicated coloring is a graph coloring game in which there are two players jointly coloring the vertices of a graph in such a way that both can see the entire graph at all the time and in each round the first player (Ann) selects a vertex, and then the second player (Ben) colors it properly without creating a monochromatic edge, using a fixed set of colors. The aim of Ann is to achieve a proper coloring for G, while Ben is trying to create a situation where all the colors occur on vertices adjacent to some uncolored vertex. The smallest number of colors necessary for Ann to win the game on a graph G (regardless of Ben’s strategy) is called the indicated chromatic number of G, and is denoted by χi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _i(G)$$\end{document}. In this paper, we obtain some upper bounds for the indicated chromatic number of graphs and find a smallest 3-regular graph for which the indicated chromatic number is 4. In addition, we introduce the concept of criticality of graphs with respect to the indicated chromatic number. Also we show that {P5,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_5,K_4-e\}$$\end{document}-free graphs are k-indicated colorable for all k≥χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \chi (G)$$\end{document}.
引用
收藏
页码:203 / 219
页数:16
相关论文
共 22 条
[1]  
Arbib C(2002)On ( Discrete Math. 250 1-22
[2]  
Mosca R(1977), diamond)-free graphs J. Combin. Theory Ser. B 23 234-235
[3]  
Bussmaker FC(2010)Cubic graphs on Discrete Appl. Math. 158 620-626
[4]  
Čobeljić S(1996) vertices Acta. Math. Acad. Sci. Hungar. 17 61-99
[5]  
Cvetkovic DM(2015)First-Fit coloring of Graphs Combin. 31 2357-2367
[6]  
Seidel JJ(2012)-free graphs Discrete Math. 312 3467-3472
[7]  
Choudum SA(1999)On chromatic number of graphs and set systems Discrete Math. 205 23-27
[8]  
Karthick T(2003)On indicated coloring of graphs J. Graph Theory 44 106-115
[9]  
Erdös P(2006)Indicated coloring of graphs Acta Math. Sci. 26B 314-320
[10]  
Hajnal A(1968)Circular chromatic number of Mycielski’s graphs J. Combin. Theory 4 1-3