Power cocentralizing generalized derivations on prime rings

被引:0
作者
Vincenzo De Filippis
机构
[1] University of Messina,DI.S.I.A., Faculty of Engineering
来源
Proceedings - Mathematical Sciences | 2010年 / 120卷
关键词
Prime rings; differential identities; generalized derivations;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer n ≥ 1 such that (H(u)u − uG(u))n = 0, for all u ∈ L, then one of the following holds: (1) there exists c ∈ U such that H(x) = xc, G(x) = cx; (2) R satisfies the standard identity s4 and char (R) = 2; (3) R satisfies s4 and there exist a, b, c ∈ U, such that H(x) = ax+xc, G(x) = cx+xb and (a − b)n = 0.
引用
收藏
页码:285 / 297
页数:12
相关论文
共 12 条
[1]  
Bresar M.(1993)Centralizing mappings and derivations in prime rings J. Algebra 156 385-394
[2]  
Chuang C. L.(1988)GPI’s having coefficients in Utumi quotient rings Proc. Am. Math. Soc. 103/ 723-728
[3]  
Di Vincenzo O. M.(1989)On the Boll. U.M.I. (7) 3-A 77-85
[4]  
Kharchenko V. K.(1978)-th centralizers of a Lie ideal Algebra and Logic 17 155-168
[5]  
Lanski C.(1972)Differential identities of prime rings Pacific J. Math. 42/ 117-135
[6]  
Montgomery S.(1995)Lie structure of prime rings of characteristic 2 Bull. Inst. Math. Acad. Sinica 23 1-5
[7]  
Lee P. H.(1999)Derivations cocentralizing Lie ideals Comm. Algebra 27/ 4057-4073
[8]  
Wong T. L.(1992)Generalized derivations of left faithful rings Bull. Inst. Math. Acad. Sinica 20/ 27-38
[9]  
Lee T. K.(1969)Semiprime rings with differential identities J. Algebra 12 576-584
[10]  
Lee T. K.(1957)Prime rings satisfying a generalized polynomial identity Proc. Am. Math. Soc. 8 1093-1100