Mode determination in variational mode decomposition and its application in fault diagnosis of rolling element bearings

被引:0
作者
P. S. Ambika
P. K. Rajendrakumar
Rijil Ramchand
机构
[1] National Institute of Technology,
[2] Calicut,undefined
来源
SN Applied Sciences | 2019年 / 1卷
关键词
Classification; Cross-validation; Energy entropy; Rolling element bearing; Variational mode decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
The non-stationary nature of bearing vibrations makes it difficult to extract features from the real-time signature of faulty rolling element bearings (REBs). The present work suggests to improve the diagnostic accuracy of fault detection in REBs by enhancing the mode selection property of variational mode decomposition, manipulating its initialization and input parameters (bandwidth selection parameter, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and the number of modes, k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}) and then extracting energy entropy features and using cross-validation in support vector machine (SVM) classifier. The alpha values and the number of modes are varied from (100, 1000000) and (4, 10), respectively. Mean absolute error (MAE) is used as the indicator which calculates error values obtained between the respective sum of modes and the original signal. The particular α-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha - k$$\end{document} combination with the least MAE value is chosen. The above method is tested using REB signals obtained from the bearing prognostics test rig. The results obtained from the proposed approach shows 100% diagnostic accuracy in detecting faulty REB vibration signature using five-fold cross-validation in SVM classifier.
引用
收藏
相关论文
共 131 条
[1]  
Edwards S(1998)Fault diagnosis of rotating machinery Shock Vib Dig 30 4-13
[2]  
Lees AW(1995)Back to the basics of the rotating machinery vibration analysis Sound Vib 29 12-16
[3]  
Friswell MI(1985)Vibration analysis—a proven technique as a predictive maintenance tool IEEE Trans Ind Appl 2 324-332
[4]  
Taylor JI(2008)Machine fault feature extraction based on intrinsic mode functions Meas Sci Technol 19 045105-195
[5]  
Renwick JT(2014)A fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVM Meas Sci Technol 26 025003-307
[6]  
Babson PE(2016)Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings Meas Sci Technol 27 105004-15
[7]  
Fan X(2017)Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings Mech Syst Signal Process 92 173-995
[8]  
Zuo MJ(2006)The spectral kurtosis: a useful tool for characterising non-stationary signals Mech Syst Signal Process 20 282-126
[9]  
Yu L(2017)Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification Meas Sci Technol 28 125001-4010
[10]  
Junhong Z(2014)Wavelets for fault diagnosis of rotary machines: a review with applications Sig Process 96 1-544