COVID-19 mortality prediction in the intensive care unit with deep learning based on longitudinal chest X-rays and clinical data

被引:26
作者
Cheng, Jianhong [1 ]
Sollee, John [2 ,3 ]
Hsieh, Celina [2 ,3 ]
Yue, Hailin [1 ]
Vandal, Nicholas [4 ]
Shanahan, Justin [4 ]
Choi, Ji Whae [2 ,3 ]
Thi My Linh Tran [2 ,3 ]
Halsey, Kasey [2 ,3 ]
Iheanacho, Franklin [2 ,3 ]
Warren, James [5 ]
Ahmed, Abdullah [2 ,3 ]
Eickhoff, Carsten [6 ]
Feldman, Michael [7 ]
Barbosa, Eduardo Mortani, Jr. [4 ]
Kamel, Ihab [8 ]
Lin, Cheng Ting [8 ]
Yi, Thomas [2 ,3 ]
Healey, Terrance [2 ,3 ]
Zhang, Paul [4 ]
Wu, Jing [1 ]
Atalay, Michael [2 ,3 ]
Bai, Harrison X. [8 ]
Jiao, Zhicheng [2 ,3 ]
Wang, Jianxin [1 ]
机构
[1] Cent South Univ Technol, Sch Comp Sci & Engn, 932 Lushan S Rd, Changsha, Hunan, Peoples R China
[2] Rhode Isl Hosp, Dept Diagnost Radiol, 593 Eddy St, Providence, RI 02903 USA
[3] Brown Univ, Warren Alpert Med Sch, Providence, RI 02903 USA
[4] Univ Penn, Dept Diagnost Radiol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ London, Dept Data Sci, London, England
[6] Brown Univ, Ctr Biomed Informat, Providence, RI 02912 USA
[7] Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Sch Med, 601 N Caroline St, Baltimore, MD 21205 USA
关键词
Artificial intelligence; Machine learning; Prognosis; Hospital mortality; Coronavirus; MODEL;
D O I
10.1007/s00330-022-08588-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives We aimed to develop deep learning models using longitudinal chest X-rays (CXRs) and clinical data to predict in-hospital mortality of COVID-19 patients in the intensive care unit (ICU). Methods Six hundred fifty-four patients (212 deceased, 442 alive, 5645 total CXRs) were identified across two institutions. Imaging and clinical data from one institution were used to train five longitudinal transformer-based networks applying five-fold cross-validation. The models were tested on data from the other institution, and pairwise comparisons were used to determine the best-performing models. Results A higher proportion of deceased patients had elevated white blood cell count, decreased absolute lymphocyte count, elevated creatine concentration, and incidence of cardiovascular and chronic kidney disease. A model based on pre-ICU CXRs achieved an AUC of 0.632 and an accuracy of 0.593, and a model based on ICU CXRs achieved an AUC of 0.697 and an accuracy of 0.657. A model based on all longitudinal CXRs (both pre-ICU and ICU) achieved an AUC of 0.702 and an accuracy of 0.694. A model based on clinical data alone achieved an AUC of 0.653 and an accuracy of 0.657. The addition of longitudinal imaging to clinical data in a combined model significantly improved performance, reaching an AUC of 0.727 (p = 0.039) and an accuracy of 0.732. Conclusions The addition of longitudinal CXRs to clinical data significantly improves mortality prediction with deep learning for COVID-19 patients in the ICU.
引用
收藏
页码:4446 / 4456
页数:11
相关论文
共 40 条
[31]   Machine Learning for Mortality Analysis in Patients with COVID-19 [J].
Sanchez-Montanes, Manuel ;
Rodriguez-Belenguer, Pablo ;
Serrano-Lopez, Antonio J. ;
Soria-Olivas, Emilio ;
Alakhdar-Mohmara, Yasser .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (22) :1-20
[32]   Covid-19: Delta variant is now UK's most dominant strain and spreading through schools [J].
Torjesen, Ingrid .
BMJ-BRITISH MEDICAL JOURNAL, 2021, 373 :n1445
[33]   Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation [J].
Vaid, Akhil ;
Somani, Sulaiman ;
Russak, Adam J. ;
De Freitas, Jessica K. ;
Chaudhry, Fayzan F. ;
Paranjpe, Ishan ;
Johnson, Kipp W. ;
Lee, Samuel J. ;
Miotto, Riccardo ;
Richter, Felix ;
Zhao, Shan ;
Beckmann, Noam D. ;
Naik, Nidhi ;
Kia, Arash ;
Timsina, Prem ;
Lala, Anuradha ;
Paranjpe, Manish ;
Golden, Eddye ;
Danieletto, Matteo ;
Singh, Manbir ;
Meyer, Dara ;
O'Reilly, Paul F. ;
Huckins, Laura ;
Kovatch, Patricia ;
Finkelstein, Joseph ;
Freeman, Robert M. ;
Argulian, Edgar ;
Kasarskis, Andrew ;
Percha, Bethany ;
Aberg, Judith A. ;
Bagiella, Emilia ;
Horowitz, Carol R. ;
Murphy, Barbara ;
Nestler, Eric J. ;
Schadt, Eric E. ;
Cho, Judy H. ;
Cordon-Cardo, Carlos ;
Fuster, Valentin ;
Charney, Dennis S. ;
Reich, David L. ;
Bottinger, Erwin P. ;
Levin, Matthew A. ;
Narula, Jagat ;
Fayad, Zahi A. ;
Just, Allan C. ;
Charney, Alexander W. ;
Nadkarni, Girish N. ;
Glicksberg, Benjamin S. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (11)
[34]   Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data [J].
Wang, Robin ;
Jiao, Zhicheng ;
Li Yang ;
Choi, Ji Whae ;
Xiong, Zeng ;
Halsey, Kasey ;
Tran, Thi My Linh ;
Pan, Ian ;
Collins, Scott A. ;
Feng, Xue ;
Wu, Jing ;
Chang, Ken ;
Shi, Lin-Bo ;
Yang, Shuai ;
Yu, Qi-Zhi ;
Liu, Jie ;
Fu, Fei-Xian ;
Jiang, Xiao-Long ;
Wang, Dong-Cui ;
Zhu, Li-Ping ;
Yi, Xiao-Ping ;
Healey, Terrance T. ;
Zeng, Qiu-Hua ;
Liu, Tao ;
Hu, Ping-Feng ;
Huang, Raymond Y. ;
Li, Yi-Hui ;
Sebro, Ronnie A. ;
Zhang, Paul J. L. ;
Wang, Jianxin ;
Atalay, Michael K. ;
Liao, Wei-Hua ;
Fan, Yong ;
Bai, Harrison X. .
EUROPEAN RADIOLOGY, 2022, 32 (01) :205-212
[35]   A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis [J].
Wang, Shuo ;
Zha, Yunfei ;
Li, Weimin ;
Wu, Qingxia ;
Li, Xiaohu ;
Niu, Meng ;
Wang, Meiyun ;
Qiu, Xiaoming ;
Li, Hongjun ;
Yu, He ;
Gong, Wei ;
Bai, Yan ;
Li, Li ;
Zhu, Yongbei ;
Wang, Liusu ;
Tian, Jie .
EUROPEAN RESPIRATORY JOURNAL, 2020, 56 (02)
[36]   Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19 [J].
Wong, Ho Yuen Frank ;
Lam, Hiu Yin Sonia ;
Fong, Ambrose Ho-Tung ;
Leung, Siu Ting ;
Chin, Thomas Wing-Yan ;
Lo, Christine Shing Yen ;
Lui, Macy Mei-Sze ;
Lee, Jonan Chun Yin ;
Chiu, Keith Wan-Hang ;
Chung, Tom Wai-Hin ;
Lee, Elaine Yuen Phin ;
Wan, Eric Yuk Fai ;
Hung, Ivan Fan Ngai ;
Lam, Tina Poy Wing ;
Kuo, Michael D. ;
Ng, Ming-Yen .
RADIOLOGY, 2020, 296 (02) :E72-E78
[37]   AI-based analysis of CT images for rapid triage of COVID-19 patients [J].
Xu, Qinmei ;
Zhan, Xianghao ;
Zhou, Zhen ;
Li, Yiheng ;
Xie, Peiyi ;
Zhang, Shu ;
Li, Xiuli ;
Yu, Yizhou ;
Zhou, Changsheng ;
Zhang, Longjiang ;
Gevaert, Olivier ;
Lu, Guangming .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[38]   The role of imaging in 2019 novel coronavirus pneumonia (COVID-19) [J].
Yang, Wenjing ;
Sirajuddin, Arlene ;
Zhang, Xiaochun ;
Liu, Guanshu ;
Teng, Zhongzhao ;
Zhao, Shihua ;
Lu, Minjie .
EUROPEAN RADIOLOGY, 2020, 30 (09) :4874-4882
[39]   Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients [J].
Zhu, Jocelyn S. ;
Ge, Peilin ;
Jiang, Chunguo ;
Zhang, Yong ;
Li, Xiaoran ;
Zhao, Zirun ;
Zhang, Liming ;
Duong, Tim Q. .
JOURNAL OF THE AMERICAN COLLEGE OF EMERGENCY PHYSICIANS OPEN, 2020, 1 (06) :1364-1373
[40]  
Zhu N, 2020, NEW ENGL J MED, V382, P727, DOI [10.1172/JCI89857, 10.1056/NEJMoa2001017]