Regular and Vertex-Transitive Kähler Graphs Having Commutative Principal and Auxiliary Adjacency Operators

被引:0
作者
Toshiaki Adachi
Guanyuan Chen
机构
[1] Nagoya Institute of Technology,Department of Mathematics
[2] Nagoya Institute of Technology,Division of Mathematics and Mathematical Science
[3] Renesas Electronic Co.,Automotive Business Unit
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Kähler graphs; Vertex-transitive graphs; Adjacency operators; Bicolored paths; Zeta functions; 05C50; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
A Kähler graph is a compound of two graphs having a common set of vertices and is a discrete model of a Riemannian manifold equipped with magnetic fields. In this paper we study selfadjointness of adjacency operators of Kähler graphs and express their zeta functions in terms of eigenvalues of their principal and auxiliary adjacency operators when they are commutative. Also, we construct finite vertex-transitive Kähler graphs satisfying the commutativity condition.
引用
收藏
页码:933 / 958
页数:25
相关论文
共 15 条
  • [1] Adachi T(1995)Kähler magnetic flows for a manifold of constant holomorphic sectional curvature Tokyo Math. J. 18 473-483
  • [2] Alspach B(1982)A construction for vertex-transitive graphs Can. J. Math. 44 307-318
  • [3] Parsons TD(1964)Vertex-transitive graphs Monatsh. Math. 68 426-438
  • [4] Sabidussi G(2008)Discrete geometric analysis, in analysis on graphs and its applications Proc. Sympos. Pure Math. 77 51-83
  • [5] Sunada T(2015)Isospectral Kähler graphs Kodai Math. J. 38 560-580
  • [6] Yaermaimaiti T(2015)Kähler graphs of connected product type Appl. Math. Inf. Sci. 9 2767-2773
  • [7] Adachi T(2015)Laplacians for derived graphs of a regular Kähler graph C. R. Math. Acad. Sci. Soc. R. Can. 37 141-156
  • [8] Yaermaimaiti T(2016)A note on vertex-transitive Kähler graphs Hokkaido Math. J. 445 419-433
  • [9] Adachi T(2018)Zeta functions for Kähler graphs Kodai Math. J. 41 227-239
  • [10] Yaermaimaiti T(undefined)undefined undefined undefined undefined-undefined