On the number of conjugacy classes of π-elements in finite groups

被引:0
|
作者
Attila Maróti
Hung Ngoc Nguyen
机构
[1] Alfréd Rényi Institute of Mathematics,Fachbereich Mathematik
[2] Technische Universität Kaiserslautern,Department of Mathematics
[3] The University of Akron,undefined
来源
Archiv der Mathematik | 2014年 / 102卷
关键词
Primary 20E45; Finite groups; Conjugacy classes; -elements;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and π be a set of primes. Put dπ(G)=kπ(G)/|G|π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_{\pi}(G) = k_{\pi}(G)/|G|_{\pi}}$$\end{document}, where kπ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k_{\pi}(G)}$$\end{document} is the number of conjugacy classes of π-elements in G and |G|π is the π-part of the order of G. In this paper we initiate the study of this invariant by showing that if dπ(G)>5/8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_{\pi}(G) > 5/8}$$\end{document} then G possesses an abelian Hall π-subgroup, all Hall π-subgroups of G are conjugate, and every π-subgroup of G lies in some Hall π-subgroup of G. Furthermore, we have dπ(G)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_{\pi}(G) = 1}$$\end{document} or dπ(G)=2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_{\pi}(G) = 2/3}$$\end{document}. This extends and generalizes a result of W. H. Gustafson.
引用
收藏
页码:101 / 108
页数:7
相关论文
共 50 条