On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\cal T}_{\!p}}$\end{document}-Locally Uniformly Rotund Norms

被引:0
|
作者
J. Orihuela
机构
[1] Universidad de Murcia,Dpto. Matemáticas
关键词
Locally uniformly rotund norm; Nonlinear transfer; Descriptive Banach spaces; Moore spaces; -spaces; Multiple slice localization; Renorming theory; 46B03; 46B20; 46B26; 54E20; 54E30; 54E35; 54E40;
D O I
10.1007/s11228-013-0254-3
中图分类号
学科分类号
摘要
Linear topological characterizations of Banach spaces E ⊂ ℓ ∞ (Γ) which admit pointwise locally uniformly rotund norms are obtained. We introduce a new way to construct the norm with families of sliced sets. The topological properties described are related with the theory of generalized metric spaces, in particular with Moore spaces and σ-spaces. A non liner transfer is obtained, Question 6.16 in Moltó et al. (2009) is answered and some connections with Kenderov’s School of Optimization is presented in this paper.
引用
收藏
页码:691 / 709
页数:18
相关论文
共 50 条