On homological mirror symmetry for chain type polynomials

被引:0
作者
Umut Varolgunes
Alexander Polishchuk
机构
[1] Stanford University,
[2] University of Oregon,undefined
[3] National Research University Higher School of Economics,undefined
[4] Korea Institute for Advanced Study,undefined
来源
Mathematische Annalen | 2024年 / 388卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider Takahashi’s categorical interpretation of the Berglund–Hubsch mirror symmetry conjecture for invertible polynomials in the case of chain polynomials. Our strategy is based on a stronger claim that the relevant categories satisfy a recursion of directed A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-categories, which may be of independent interest. We give a full proof of this claim on the B-side. On the A-side we give a detailed sketch of an argument, which falls short of a full proof because of certain missing foundational results in Fukaya–Seidel categories, most notably a generation statement.
引用
收藏
页码:2331 / 2386
页数:55
相关论文
共 50 条
[21]   HOMOLOGICAL MIRROR SYMMETRY FOR PUNCTURED SPHERES [J].
Abouzaid, Mohammed ;
Auroux, Denis ;
Efimov, Alexander I. ;
Katzarkov, Ludmil ;
Orlov, Dmitri .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (04) :1051-1083
[22]   Homological mirror symmetry for hypersurface cusp singularities [J].
Keating, Ailsa .
SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02) :1411-1452
[23]   Matrix factorizations and homological mirror symmetry on the torus [J].
Knapp, Johanna ;
Omer, Harun .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03)
[24]   Noncommutative homological mirror symmetry of elliptic curves [J].
Lee, Sangwook .
KYOTO JOURNAL OF MATHEMATICS, 2021, 61 (03) :723-743
[25]   Homological mirror symmetry for curves of higher genus [J].
Efimov, Alexander I. .
ADVANCES IN MATHEMATICS, 2012, 230 (02) :493-530
[26]   HOMOLOGICAL MIRROR SYMMETRY FOR THE GENUS TWO CURVE [J].
Seidel, Paul .
JOURNAL OF ALGEBRAIC GEOMETRY, 2011, 20 (04) :727-769
[27]   ON THE HOMOLOGICAL MIRROR SYMMETRY CONJECTURE FOR PAIRS OF PANTS [J].
Sheridan, Nick .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 89 (02) :271-367
[28]   Homological mirror symmetry for Brieskorn–Pham singularities [J].
Masahiro Futaki ;
Kazushi Ueda .
Selecta Mathematica, 2011, 17 :435-452
[29]   Homological mirror symmetry for hypersurface cusp singularities [J].
Ailsa Keating .
Selecta Mathematica, 2018, 24 :1411-1452
[30]   Homological mirror symmetry of elementary birational cobordisms [J].
Gabriel Kerr .
Selecta Mathematica, 2017, 23 :2801-2847