Primitive elements of free nonassociative algebras

被引:0
作者
Mikhalev A.A. [1 ]
Mikhalev A.V. [1 ]
Chepovskiy A.A. [1 ]
Champagnier K. [1 ]
机构
[1] Department of Mechanics and Mathematics, Moscow State University, Moscow
关键词
Free Algebra; Primitive Element; Left Child; Universal Operator; Free Associative Algebra;
D O I
10.1007/s10958-008-9269-y
中图分类号
学科分类号
摘要
Improved algorithms to construct complements of primitive systems of elements of free nonassociative algebras with respect to free generating sets and algorithms to realize the rank of a system of elements are constructed and implemented. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:320 / 335
页数:15
相关论文
共 14 条
  • [1] Artamonov V.A., Mikhalev A.A., Mikhalev A.V., Combinatorial properties of free algebras of Schreier varieties of algebras, Polynomial Identities and Combinatorial Methods, pp. 47-99, (2003)
  • [2] Champagnier K., Algorithms to realize the rank and primitivity of systems of elements in free non-associative algebras, Fundam. Prikl. Mat., 6, pp. 1229-1238, (2000)
  • [3] Cohn P.M., On a generalization of the Euclidean algorithm, Math. Proc. Cambridge Philos. Soc., 57, pp. 18-30, (1961)
  • [4] Cohn P.M., Free ideal rings, J. Algebra, 1, pp. 47-69, (1964)
  • [5] Cohn P.M., Free Rings and Their Relations, (1985)
  • [6] Kurosh A.G., Nonassociative free algebras and free products of algebras, Mat. Sb., 20, pp. 239-262, (1947)
  • [7] Lewin J., On Schreier varieties of linear algebras, Trans. Amer. Math. Soc., 132, pp. 553-562, (1968)
  • [8] Lewin J., Free modules over free algebras and free group algebras: The Schreier technique, Trans. Amer. Math. Soc., 145, pp. 455-465, (1969)
  • [9] Mikhalev A.A., Shpilrain V., Yu J.-T., Combinatorial Methods, Free Groups, Polynomials, and Free Algebras, (2004)
  • [10] Mikhalev A.A., Umirbaev U.U., Yu J.-T., Automorphic orbits of elements of free non-associative algebras, J. Algebra, 243, pp. 198-223, (2001)