Early prediction of gestational diabetes mellitus using maternal demographic and clinical risk factors

被引:1
作者
Wu, Yanqi [1 ,2 ]
Hamelmann, Paul [2 ]
van der Ven, Myrthe [3 ,4 ]
Asvadi, Sima [2 ]
van der Jagt, M. Beatrijs van der Hout [1 ,3 ,4 ]
Oei, S. Guid [1 ,4 ]
Mischi, Massimo [1 ]
Bergmans, Jan [1 ]
Long, Xi [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[2] Philips Res, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[4] Maxima Med Ctr, Dept Obstet & Gynaecol, Veldhoven, Netherlands
关键词
Gestational diabetes mellitus; Early prediction; Model validation; Maternal demographics; Clinical risk factors;
D O I
10.1186/s13104-024-06758-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective To build and validate an early risk prediction model for gestational diabetes mellitus (GDM) based on first-trimester electronic medical records including maternal demographic and clinical risk factors.Methods To develop and validate a GDM prediction model, two datasets were used in this retrospective study. One included data of 14,015 pregnant women from Maxima Medical Center (MMC) in the Netherlands. The other was from an open-source database nuMoM2b including data of 10,038 nulliparous pregnant women, collected in the USA. Widely used maternal demographic and clinical risk factors were considered for modeling. A GDM prediction model based on elastic net logistic regression was trained from a subset of the MMC data. Internal validation was performed on the remaining MMC data to evaluate the model performance. For external validation, the prediction model was tested on an external test set from the nuMoM2b dataset.Results An area under the receiver-operating-characteristic curve (AUC) of 0.81 was achieved for early prediction of GDM on the MMC test data, comparable to the performance reported in previous studies. While the performance markedly decreased to an AUC of 0.69 when testing the MMC-based model on the external nuMoM2b test data, close to the performance trained and tested on the nuMoM2b dataset only (AUC = 0.70).
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Prediction of gestational diabetes based on nationwide electronic health records
    Artzi, Nitzan Shalom
    Shilo, Smadar
    Hadar, Eran
    Rossman, Hagai
    Barbash-Hazan, Shiri
    Ben-Haroush, Avi
    Balicer, Ran D.
    Feldman, Becca
    Wiznitzer, Arnon
    Segal, Eran
    [J]. NATURE MEDICINE, 2020, 26 (01) : 71 - +
  • [2] Estimating the risk of gestational diabetes mellitus based on the 2013 WHO criteria: a prediction model based on clinical and biochemical variables in early pregnancy
    Benhalima, Katrien
    Van Crombrugge, Paul
    Moysonl, Carolien
    Verhaeghe, Johan
    Vandeginste, Sofie
    Verlaenen, Hilde
    Vercammens, Chris
    Maes, Toon
    Dufraimont, Els
    De Block, Christophe
    Jacquemyn, Yves
    Mekahli, Farah
    De Clipper, Katrien
    AnnickVan Den Bruel
    Loccufier, Anne
    Laenen, Annouschka
    Minschartl, Caro
    Devlieger, Roland
    Mathieu, Chantal
    [J]. ACTA DIABETOLOGICA, 2020, 57 (06) : 661 - 671
  • [3] Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review
    Bertini, Ayleen
    Salas, Rodrigo
    Chabert, Steren
    Sobrevia, Luis
    Pardo, Fabian
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 9
  • [4] Ten quick tips for machine learning in computational biology
    Chicco, Davide
    [J]. BIODATA MINING, 2017, 10
  • [5] Maternal obesity and degree of glucose intolerance on neonatal hypoglycaemia and birth weight: a retrospective observational cohort study in women with gestational diabetes mellitus
    Cremona, Alexandra
    Saunders, Jean
    Cotter, Amanda
    Hamilton, Jill
    Donnelly, Alan E.
    O'Gorman, Clodagh S.
    [J]. EUROPEAN JOURNAL OF PEDIATRICS, 2020, 179 (04) : 653 - 660
  • [6] Development and validation of a clinical model for preconception and early pregnancy risk prediction of gestational diabetes mellitus in nulliparous women
    Donovan, Brittney M.
    Breheny, Patrick J.
    Robinson, Jennifer G.
    Baer, Rebecca J.
    Saftlas, Audrey F.
    Bao, Wei
    Greiner, Andrea L.
    Carter, Knute D.
    Oltman, Scott P.
    Rand, Larry
    Jelliffe-Pawlowski, Laura L.
    Ryckman, Kelli K.
    [J]. PLOS ONE, 2019, 14 (04):
  • [7] Early Assessment of the Risk for Gestational Diabetes Mellitus: Can Fasting Parameters of Glucose Metabolism Contribute to Risk Prediction?
    Falcone, Veronica
    Kotzaeridi, Grammata
    Breil, Melanie Hanne
    Rosicky, Ingo
    Stopp, Tina
    Yerlikaya-Schatten, Guelen
    Feichtinger, Michael
    Eppel, Wolfgang
    Husslein, Peter
    Tura, Andrea
    Goebl, Christian S.
    [J]. DIABETES & METABOLISM JOURNAL, 2019, 43 (06) : 785 - 793
  • [8] A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b)
    Haas, David M.
    Parker, Corette B.
    Wing, Deborah A.
    Parry, Samuel
    Grobman, William A.
    Mercer, Brian M.
    Simhan, Hyagriv N.
    Hoffman, Matthew K.
    Silver, Robert M.
    Wadhwa, Pathik
    Iams, Jay D.
    Koch, Matthew A.
    Caritis, Steve N.
    Wapner, Ronald J.
    Esplin, Sean
    Elovitz, Michal A.
    Foroud, Tatiana
    Peaceman, Alan M.
    Saade, George R.
    Willinger, Marian
    Reddy, Uma M.
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2015, 212 (04) : 539.e1 - 539.e24
  • [9] Prediction models for the risk of gestational diabetes: a systematic review
    Marije Lamain – de Ruiter
    Anneke Kwee
    Christiana A. Naaktgeboren
    Arie Franx
    Karel G. M. Moons
    Maria P. H. Koster
    [J]. Diagnostic and Prognostic Research, 1 (1)
  • [10] Louda F, 2013, Int J Gynaecol Obstet, V120, P240