Free Torsional Vibration Analysis of Nanorods with Non-circular Cross-Sections Based on the Second-Order Strain Gradient Theory

被引:0
作者
Roozbeh Shameli
Farshid Aghadavoudi
Mohammad Hashemian
机构
[1] Islamic Azad University,Department of Mechanical Engineering, Khomeinishahr Branch
来源
Journal of Vibration Engineering & Technologies | 2023年 / 11卷
关键词
Torsional vibration; Nanorod; Non-circular cross-section; Second-order strain gradient theory;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3039 / 3055
页数:16
相关论文
共 90 条
[1]  
Enayat S(2020)A comprehensive study for mechanical behavior of functionally graded porous nanobeams resting on elastic foundation J Braz Soc Mech Sci Eng 42 1-24
[2]  
Hashemian M(2016)Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions Micro Nano Lett 11 741-745
[3]  
Toghraie D(2021)Dynamic stability analysis of functionally graded Euler–Bernoulli nanobeams under a sequence of moving nanoparticle based on nonlocal elasticity theory J Simul Anal Novel Technol Mech Eng 13 25-38
[4]  
Jaberzadeh E(2019)Effects of rotational restraints on the thermal buckling of carbon nanotube Micro Nano Lett 14 158-162
[5]  
Yayli MÖ(2020)Axial vibration analysis of a Rayleigh nanorod with deformable boundaries Microsyst Technol 26 2661-2671
[6]  
Khanahmadi R(2018)Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material Micro Nano Lett 13 1031-1035
[7]  
Hashemian M(2021)Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam Int J Mech Sci 206 3723-3734
[8]  
Pirmoradian M(2019)Free vibration analysis of a rotationally restrained (FG) nanotube Microsyst Technol 25 202-206
[9]  
Yayli MÖ(2018)Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints Micro Nano Lett 13 1135-1143
[10]  
Yayli MÖ(2022)Static stability and free vibration characteristics of a micro laminated beam under varying axial load using modified couple stress theory and Ritz method Compos Struct 281 63-75