A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained optimization

被引:0
作者
Chun-ming Tang
Shuai Liu
Jin-bao Jian
Jian-ling Li
机构
[1] Guangxi University,College of Mathematics and Information Science
[2] Yulin Normal University,College of Mathematics and Information Science
[3] Guangxi University,College of Mathematics and Information Science
来源
Numerical Algorithms | 2014年 / 65卷
关键词
Nonsmooth optimization; Sequential quadratic programming; Gradient sampling; Feasible algorithm; 90C30; 49M30;
D O I
暂无
中图分类号
学科分类号
摘要
The gradient sampling (GS) algorithm for minimizing a nonconvex, nonsmooth function was proposed by Burke et al. (SIAM J Optim 15:751–779, 2005), whose most interesting feature is the use of randomly sampled gradients instead of subgradients. In this paper, combining the GS technique with the sequential quadratic programming (SQP) method, we present a feasible SQP-GS algorithm that extends the GS algorithm to nonconvex, nonsmooth constrained optimization. The proposed algorithm generates a sequence of feasible iterates, and guarantees that the objective function is monotonically decreasing. Global convergence is proved in the sense that, with probability one, every cluster point of the iterative sequence is stationary for the improvement function. Finally, some preliminary numerical results show that the proposed algorithm is effective.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 52 条
  • [1] Curtis FE(2012)A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization SIAM J. Optim. 22 474-500
  • [2] Overton ML(2002)Two numerical methods for optimizing matrix stability Linear Algebra Appl. 351/352 147-184
  • [3] Burke JV(2005)A robust gradient sampling algorithm for nonsmooth, nonconvex optimization SIAM J. Optim. 15 751-779
  • [4] Lewis AS(1977)Optimization of Lipschitz continuous functions Math. Program 13 14-22
  • [5] Overton ML(2005)An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter SIAM J. Optim. 16 146-169
  • [6] Burke JV(2007)Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization SIAM J. Optim. 18 379-388
  • [7] Lewis AS(2010)A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization SIAM J. Optim. 20 1983-1994
  • [8] Overton ML(2012)An adaptive gradient sampling algorithm for nonsmooth optimization Optim. Method Softw. 26 350-361
  • [9] Goldstein AA(2004)Pseudospectral components and the distance to uncontrollability SIAM J. Matrix Anal. Appl. 148 528-549
  • [10] Sagastizábal CA(2011)Globally convergent cutting plane method for nonconvex nonsmooth minimization J. Optim. Theory Appl. 44 363-377