On weak compactness of bounded sets in banach and locally convex spaces

被引:0
作者
Kogut P.I. [1 ]
Mel'nik V.S. [2 ]
机构
[1] Dnepropetrovsk University, Dnepropetrovsk
[2] Institute of Applied Systems of Analysis, Ukrainian Academy of Sciences, Ukrainian Ministry of Education, Kiev
关键词
Banach Space; Weak Topology; Adjoint Operator; Convex Space; Admissible Control;
D O I
10.1007/BF02591778
中图分类号
学科分类号
摘要
We investigate the compactness of one class of bounded subsets in Banach and locally convex spaces. We obtain a generalization of the Banach-Alaoglu theorem to a class of subsets that are not polars of convex balanced neighborhoods of zero. © 2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:837 / 846
页数:9
相关论文
共 5 条
  • [1] Reed, M., Simon, B., (1977) Methods of Modem Mathematical Physics, Vol.1, Functional Analysis, 1. , [Russian translation], Mir, Moscow
  • [2] Schaefer, H., (1971) Topological Vector Spaces, , [Russian translation], Mir, Moscow
  • [3] Sobolev, S.L., (1989) Selected Problems of the Theory of Functional Spaces and Generalized Functions [in Russian], , Nauka, Moscow
  • [4] Rudin, W., (1975) Functional Analysis, , [Russian translation], Mir, Moscow
  • [5] Yosida, A., (1967) Functional Analysis, , [Russian translation], Mir, Moscow