Vortices for a Rotating Toroidal Bose–Einstein Condensate

被引:0
|
作者
Stan Alama
Lia Bronsard
J. Alberto Montero
机构
[1] McMaster University,Department of Mathematics and Statistics
[2] University of Toronto,Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2008年 / 187卷
关键词
Vortex; Vortex Line; Einstein Condensate; Weighted Mass; Line Energy;
D O I
暂无
中图分类号
学科分类号
摘要
We construct local minimizers of the Gross–Pitaevskii energy, introduced to model Bose–Einstein condensates (BEC) in the Thomas–Fermi regime which are subject to a uniform rotation. Our sample domain is taken to be a solid torus of revolution in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^3$$\end{document} with starshaped cross-section. We show that for angular speeds ωε = O(|ln ε|) there exist local minimizers of the energy which exhibit vortices, for small enough values of the parameter ε. These vortices concentrate at one or several planar arcs (represented by integer multiplicity rectifiable currents) which minimize a line energy, obtained as a Γ-limit of the Gross–Pitaevskii functional. The location of these limiting vortex lines can be described under certain geometrical hypotheses on the cross-sections of the torus.
引用
收藏
页码:481 / 522
页数:41
相关论文
共 50 条
  • [1] 3-Dimensional Dynamics of Vortices in a rotating Bose-Einstein Condensate
    Narimasa Sasa
    Masahiko Machida
    Hideki Matsumoto
    Journal of Low Temperature Physics, 2005, 138 : 617 - 622
  • [2] 3-dimensional dynamics of vortices in a rotating Bose-Einstein condensate
    Sasa, N
    Machida, M
    Matsumoto, H
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 138 (3-4) : 617 - 622
  • [3] A Rotating Bose-Einstein Condensation in a Toroidal Trap
    Wen Yu-Chuan
    Zhang Peng-Ming
    Yang Shi-Jie
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1031 - 1034
  • [4] A Rotating Bose-Einstein Condensation in a Toroidal Trap
    文渝川
    张鹏鸣
    杨师杰
    CommunicationsinTheoreticalPhysics, 2011, 56 (12) : 1031 - 1034
  • [5] Nucleation of quantized vortices in a gaseous Bose-Einstein condensate
    Chevy, F
    Madison, K
    Bretin, V
    Dalibard, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (04): : 663 - 669
  • [6] Dynamical properties of a rotating Bose-Einstein condensate
    Kling, S.
    Pelster, A.
    LASER PHYSICS, 2009, 19 (05) : 1072 - 1078
  • [7] Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap
    Ryu, C.
    Andersen, M. F.
    Clade, P.
    Natarajan, Vasant
    Helmerson, K.
    Phillips, W. D.
    PHYSICAL REVIEW LETTERS, 2007, 99 (26)
  • [8] Complex Langevin simulation of quantum vortices in a Bose-Einstein condensate
    Hayata, Tomoya
    Yamamoto, Arata
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [9] Bose-Einstein condensate in a rapidly rotating nonsymmetric trap
    Fetter, Alexander L.
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [10] Rotating Bose-Einstein condensate stars at finite temperature
    Aswathi, P. S.
    Keerthi, P. S.
    Jyothilakshmi, O. P.
    Naik, Lakshmi J.
    Sreekanth, V.
    PHYSICAL REVIEW D, 2023, 108 (12)