Vortices for a Rotating Toroidal Bose–Einstein Condensate

被引:0
作者
Stan Alama
Lia Bronsard
J. Alberto Montero
机构
[1] McMaster University,Department of Mathematics and Statistics
[2] University of Toronto,Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2008年 / 187卷
关键词
Vortex; Vortex Line; Einstein Condensate; Weighted Mass; Line Energy;
D O I
暂无
中图分类号
学科分类号
摘要
We construct local minimizers of the Gross–Pitaevskii energy, introduced to model Bose–Einstein condensates (BEC) in the Thomas–Fermi regime which are subject to a uniform rotation. Our sample domain is taken to be a solid torus of revolution in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^3$$\end{document} with starshaped cross-section. We show that for angular speeds ωε = O(|ln ε|) there exist local minimizers of the energy which exhibit vortices, for small enough values of the parameter ε. These vortices concentrate at one or several planar arcs (represented by integer multiplicity rectifiable currents) which minimize a line energy, obtained as a Γ-limit of the Gross–Pitaevskii functional. The location of these limiting vortex lines can be described under certain geometrical hypotheses on the cross-sections of the torus.
引用
收藏
页码:481 / 522
页数:41
相关论文
共 32 条
[1]  
Aftalion A.(2004)Giant vortices in combined harmonic and quartic traps Phys. Rev. A 69 033608-718
[2]  
Danaila I.(2002)On the shape of vortices for a rotating Bose–Einstein condensate Phys. Rev. A 66 023611-520
[3]  
Aftalion A.(2003)Properties of a single vortex solution in a rotation Bose–Einstein condensate C. R. Acad. Sci. Paris, Ser. I 336 713-64
[4]  
Jerrard R.L.(2001)Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions J. Funct. Anal. 186 432-577
[5]  
Aftalion A.(2004)Fast rotation of a Bose–Einstein condensate Phys. Rev. Lett. 92 050403-191
[6]  
Jerrard R.(1986)Remarks on sublinear elliptic equations Nonlin. Anal. 10 55-84
[7]  
Bethuel F.(2004)Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions Commun. Math. Phys. 249 549-26
[8]  
Brezis H.(2002)The Jacobian and the Ginzburg–Landau energy Calc. Var. PDE 14 151-0125
[9]  
Orlandi G.(2002)Giant hole and circular superflow in a fast rotating Bose–Einstein condensate Phys. Rev. B 66 053606-244
[10]  
Bretin V.(1989)Local minimizers and singular perturbations Proc. R. Soc. Edin. 111A 69-undefined