Classification of anti-symmetric solutions to the fractional Lane-Emden system

被引:0
作者
Congming Li
Ran Zhuo
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences and CMA
[2] Huanghuai University,Shanghai
来源
Science China Mathematics | 2023年 / 66卷
关键词
Lane-Emden system; fractional Laplacian; maximum principle; Liouville type theorems; existence; 35A01; 35B09; 35B50; 35B53; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
We study the anti-symmetric solutions to the Lane-Emden type system involving fractional Laplacian (−Δ)s (0 < s < 1). First we obtain a Liouville type theorem in the often-used defining space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal L}_{2s}}$$\end{document}. An interesting lower bound on the solutions is derived to estimate the Lipschitz coefficient in the sub-linear cases. Considering the anti-symmetric property, one can naturally extend the defining space from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal L}_{2s}}$$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal L}_{2s + 1}}$$\end{document}. Surprisingly, with this extension, we show the existence of non-trivial solutions. This is very different from the previous results of the Lane-Emden system.
引用
收藏
页码:723 / 744
页数:21
相关论文
共 46 条
[1]  
Bouchaud J-P(1990)Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications Phys Rep 195 127-293
[2]  
Georges A(2002)A Liouville-type theorem for Lane-Emden systems Indiana Univ Math J 51 37-51
[3]  
Busca J(2010)Positive solutions of nonlinear problems involving the square root of the Laplacian Adv Math 224 2052-2093
[4]  
Manásevich R(2010)Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann of Math (2) 171 1903-1930
[5]  
Cabré X(1991)Classification of solutions of some nonlinear elliptic equations Duke Math J 63 615-622
[6]  
Tan J G(2009)An integral system and the Lane-Emden conjecture Discrete Contin Dyn Syst 24 1167-1184
[7]  
Caffarelli L(2017)A direct method of moving planes for the fractional Laplacian Adv Math 308 404-437
[8]  
Vasseur A(2017)The maximum principles for fractional Laplacian equations and their applications Commun Contemp Math 19 1750018-1377
[9]  
Chen W X(2019)A Liouville theorem for the subcritical Lane-Emden system Discrete Contin Dyn Syst 39 1359-397
[10]  
Li C M(1994)A Liouville-type theorem for elliptic systems Ann Sc Norm Super Pisa Cl Sci (5) 21 387-425