Deep Sea Water Alleviates Tau Phosphorylation and Cognitive Impairment via PI3K/Akt/GSK-3β Pathway

被引:0
|
作者
Shan He
Wei-Bing Peng
Xian-Jun Fu
Hong-Lei Zhou
Zhen-Guo Wang
机构
[1] Shandong University of Traditional Chinese Medicine,School of Pharmacology
[2] Qilu University of Technology (Shandong Academy of Sciences),Biology Institute
[3] Shandong University of Traditional Chinese Medicine,Institute for Literature and Culture of Chinese Medicine
[4] Shandong University of Traditional Chinese Medicine,Qingdao Academy of Chinese Medical Sciences
来源
Marine Biotechnology | 2022年 / 24卷
关键词
Deep sea water; Cognitive impairment; Tau hyperphosphorylation; PI3K/Akt/GSK-3β signaling; Minerals;
D O I
暂无
中图分类号
学科分类号
摘要
Deep sea water (DSW), as a noticeable natural resource, has been demonstrated to contain high levels of beneficial minerals and exert marked anti-diabetes effects. Epidemiological studies show that type 2 diabetes mellitus (T2DM) is closely related to high danger of Alzheimer’s disease (AD); moreover, Akt/GSK-3β signaling is the main underlying pathway that connects these two diseases. Besides, it has been demonstrated that minerals in DSW, such as Mg, Se, and Zn, could effectively treat cognitive deficits associated with AD. Herein, we first observed the protection of DSW against cognitive dysfunction in T2DM rats, then furtherly explored the neuroprotective mechanism in SH-SY5Y cell model. In T2DM rats, DSW obviously elevated the concentrations of elements Mg, V, Cr, Zn, and Se in brain and improved learning and memory dysfunction in behavior assays, including Morris water maze (MWM) and new object recognition (NOR). Western blot (WB) results demonstrated that DSW could stimulate PI3K/Akt/GSK-3β signaling, arrest Tau hyperphosphorylation at serine (Ser) 396 and threonine (Thr)231, which was confirmed by immunohistochemistry (IHC). In order to further confirm the mechanism, we employed wortmannin to inhibit PI3K in SH-SY5Y cells; results showed that pretreatment with wortmannin almost abolished DSW-induced decreases in phosphorylated Tau. Taken together, these data elucidated that DSW could improve Tau hyperphosphorylation and cognitive impairment, which were closely related with the stimulation of Akt/GSK-3β signaling, and the neuroprotective effects of DSW should be contributed to the synergistic effects of major and trace elements in it, such as Mg, V, Cr, Zn, and Se. These experimental evidence indicated that DSW may be explored as natural neuroprotective food for the prevention and treatment of AD.
引用
收藏
页码:68 / 81
页数:13
相关论文
共 50 条
  • [41] Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3β signaling pathway
    Xian Zhang
    Wei Jiang
    Ai-Ling Zhou
    Min Zhao
    Dao-Rong Jiang
    World Journal of Gastroenterology, 2017, 23 (21) : 3839 - 3849
  • [42] Allantoin ameliorates amyloid β-peptide-induced memory impairment by regulating the PI3K/Akt/GSK-3β signaling pathway in rats
    Tzeng, Chung-Yuh
    Lee, Wei-Shan
    Liu, Keng-Fan
    Tsou, Hsi-Kai
    Chen, Chun-Jung
    Peng, Wen-Huang
    Tsai, Jen-Chieh
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 153
  • [43] Resveratrol Combined with 17β-Estradiol Prevents IL-1β Induced Apoptosis in Human Nucleus Pulposus Via The PI3K/AKT/Mtor and PI3K/AKT/GSK-3β Pathway
    Bai, Xiaoliang
    Guo, Xiaohui
    Zhang, Feng
    Zheng, Long
    Ding, Wenyuan
    Yang, Sidong
    JOURNAL OF INVESTIGATIVE SURGERY, 2021, 34 (08) : 904 - 911
  • [44] Betaine Alleviates Cognitive Deficits in Diabetic Rats via PI3K/Akt Signaling Pathway Regulation
    Huang, Bingqing
    Hu, Xiaoli
    Hu, Jie
    Chen, Zhenfei
    Zhao, Hao
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2020, 49 (03) : 270 - 278
  • [45] Arctigenin Attenuates Learning and Memory Deficits through PI3k/Akt/GSK-3β Pathway Reducing Tau Hyperphosphorylation in Aβ-Induced AD Mice
    Qi, Yue
    Dou, De-Qiang
    Jiang, Hong
    Zhang, Bing-Bing
    Qin, Wen-Yan
    Kang, Kai
    Zhang, Na
    Jia, Dong
    PLANTA MEDICA, 2017, 83 (01-02) : 51 - 56
  • [46] Mangostanaxanthone IV Ameliorates Streptozotocin-Induced Neuro-Inflammation, Amyloid Deposition, and Tau Hyperphosphorylation via Modulating PI3K/Akt/GSK-3β Pathway
    Abdallah, Hossam M.
    El Sayed, Nesrine S.
    Sirwi, Alaa
    Ibrahim, Sabrin R. M.
    Mohamed, Gamal A.
    Abdel Rasheed, Nora O.
    BIOLOGY-BASEL, 2021, 10 (12):
  • [47] Sulforaphane Ameliorates the Intestinal Injury in Necrotizing Enterocolitis by Regulating the PI3K/Akt/GSK-3β Signaling Pathway
    Bao, Zhong-Kun
    Mi, Yan-Hong
    Xiong, Xiao-Yu
    Wang, Xin-Hong
    CANADIAN JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2022, 2022
  • [48] Salvigenin Suppresses Hepatocellular Carcinoma Glycolysis and Chemoresistance Through Inactivating the PI3K/AKT/GSK-3β Pathway
    Shao, Hui
    Chen, Jingyan
    Li, Ali
    Ma, Lili
    Tang, Yongzhi
    Chen, Huazhong
    Chen, Yongping
    Liu, Junyan
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 195 (08) : 5217 - 5237
  • [49] Salvigenin Suppresses Hepatocellular Carcinoma Glycolysis and Chemoresistance Through Inactivating the PI3K/AKT/GSK-3β Pathway
    Hui Shao
    Jingyan Chen
    Ali Li
    Lili Ma
    Yongzhi Tang
    Huazhong Chen
    Yongping Chen
    Junyan Liu
    Applied Biochemistry and Biotechnology, 2023, 195 : 5217 - 5237
  • [50] Dendrobine alleviates LPS-induced acute lung injury via activation of the PI3K/AKT/GSK3(3 pathway
    Zhou, Jia
    Li, Sanzhong
    Zeng, Zhenguo
    JOURNAL OF ETHNOPHARMACOLOGY, 2025, 346