Numerical investigations on cold cracking avoidance in fillet welds of high-strength steels

被引:0
作者
E. Steppan
T. Mente
Th. Böllinghaus
机构
[1] BAM Federal Institute for Materials Research and Testing,9.4 Weld Mechanics
[2] BAM Federal Institute for Materials Research and Testing,9 Component Safety
来源
Welding in the World | 2013年 / 57卷
关键词
High-strength structural steels; Hydrogen diffusion; Numerical simulation; Hydrogen-assisted cold cracking (HACC); T joints; Fillet welds; Post-weld heat treatment; Hydrogen removal heat treatment diagram (HRHT);
D O I
暂无
中图分类号
学科分类号
摘要
Industry faces a growing demand for high-strength structural steels with yield strengths of up to 1,300 MPa in order to cope with increasingly higher strength requirements in engineering. Higher strength levels are achieved by a special coordinated production process and an adapted chemical composition. Nevertheless, disastrous damage cases with high-strength steels have occurred in the past. The sensitivity to mechanical property degradation by hydrogen increases dramatically with strength. This phenomenon leads to hydrogen-assisted cold cracking. T-joints with fillet welds made from one side with an included angle of 60° were examined for their cold cracking behavior. Based on the T-joint, a modified heat input, even interpass temperature, plate thickness, and length ones were examined. The diffusion behavior and the effectiveness of different post-weld heat treatments in joints were simulated. The results of post-weld heat treatments are illustrated in practical hydrogen removal heat treatment diagrams. It is noticed that the T-joint is subject to a very high risk of hydrogen-assisted cold cracking (HACC). Contrary to other joints, its most critical area for cracking is not the weld metal but the heat-affected zone surrounding area of the root pass. The simulation shows that HACC in the T-joint can only be avoided by applying a sufficient post-weld heat treatment.
引用
收藏
页码:359 / 371
页数:12
相关论文
共 18 条
  • [1] Engindeniz E(2005)MAG-Schweißen hochfester Sonderbaustähle mit Fülldrähten (MAG welding of special construction steel with filler wire) DVS-Berichte, Bd 237 187-193
  • [2] Würmell W(2000)Hochfeste Baustähle für Bordkrane (high strength structural steel for deck cranes) Stahlbau 69 306-310
  • [3] Hanus F(2003)Schweißtechnische Verarbeitung und Anwendung hochfester Baustähle im Nutzfahrzeugbau (welding processing and application of construction of utility vehicle) DVS-Berichte, Bd 225 429-435
  • [4] Kaiser HJ(2001)Hydrogen induced cracking in welded steel tubing Weld Int 15 431-437
  • [5] Pohn-Weidinger K(2010)Microstructural aspects upon hydrogen environment embrittlement of various BCC steels Int J Hydrog 35 821-832
  • [6] Tschersich HJ(1984)Die spezifische Wärmekapazität von metallischen Werkstoffen (The specific heat capacity of metallic materials).—I. Teil: Ferritische, umwandlungsfähige Stähle Archiv für das Eisenhüttenwesen—steel research 55 127-132
  • [7] Wegmann H(2000)Numerical model for hydrogen-assisted cracking Corrosion 56 611-622
  • [8] Gerster P(2006)Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation Corros Sci 48 2189-2202
  • [9] Adamiec P(1981)Temperaturführung beim Schweißen-die Begriffe Vorwärm-, Zwischenlagen- und Arbeitstemperatur im Licht der schweißtechnischen Praxis (Temperature control during welding, terms and definition preheating, interpass, and working temperature in the arc of welding practice) Schweißen und Schneiden 33(7) 325-329
  • [10] Michler T(undefined)undefined undefined undefined undefined-undefined