LVQ-SMOTE – Learning Vector Quantization based Synthetic Minority Over–sampling Technique for biomedical data

被引:0
|
作者
Munehiro Nakamura
Yusuke Kajiwara
Atsushi Otsuka
Haruhiko Kimura
机构
[1] Kanazawa University,Department of Natural Science and Engineering
[2] Ritsumeikan University,Marine Faculty of Information Science and Technology
来源
BioData Mining | / 6卷
关键词
Biomedical data; Over-sampling; Learning Vector Quantization; Synthetic Minority Over-sampling Technique;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] LVQ-SMOTE - Learning Vector Quantization based Synthetic Minority Over-sampling Technique for biomedical data
    Nakamura, Munehiro
    Kajiwara, Yusuke
    Otsuka, Atsushi
    Kimura, Haruhiko
    BIODATA MINING, 2013, 6
  • [2] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    2002, American Association for Artificial Intelligence (16):
  • [3] Handling Autism Imbalanced Data using Synthetic Minority Over-Sampling Technique (SMOTE)
    El-Sayed, Asmaa Ahmed
    Meguid, Nagwa Abdel
    Mahmood, Mahmood Abdel Manem
    Hefny, Hesham Ahmed
    PROCEEDINGS OF 2015 THIRD IEEE WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2015,
  • [4] A new hybrid approach based on genetic algorithm and support vector machine methods for hyperparameter optimization in synthetic minority over-sampling technique (SMOTE)
    Akin, Pelin
    AIMS MATHEMATICS, 2023, 8 (04): : 9400 - 9415
  • [5] Data sampling approach using heuristic Learning Vector Quantization (LVQ) classifier for software defect prediction
    Amanullah, M.
    Ramya, S. Thanga
    Sudha, M.
    Pushparathi, V. P. Gladis
    Haldorai, Anandakumar
    Pant, Bhaskar
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 3867 - 3876
  • [6] The Study of Synthetic Minority Over-sampling Technique (SMOTE) and Weighted Extreme Learning Machine for Handling Imbalance Problem on Multiclass Microarray Classification
    Khadijah
    Kusumaningrum, Retno
    Endah, Sukmawati Nur
    Rismiyati
    2018 2ND INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS), 2018, : 153 - 158
  • [7] Article FLEX-SMOTE: Synthetic over-sampling technique that flexibly adjusts to different minority class distributions
    Bunkhumpornpat, Chumphol
    Boonchieng, Ekkarat
    Chouvatut, Varin
    Lipsky, David
    PATTERNS, 2024, 5 (11):
  • [8] SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE BASED ROTATION FOREST FOR THE CLASSIFICATION OF UNBALANCED HYPERSPECTRAL DATA
    Feng, Wei
    Huang, Wenjiang
    Ye, Huichun
    Zhao, Longlong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2651 - 2654
  • [9] A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning
    Elreedy, Dina
    Atiya, Amir F.
    Kamalov, Firuz
    MACHINE LEARNING, 2024, 113 (07) : 4903 - 4923
  • [10] HHO-SMOTe: Efficient Sampling Rate for Synthetic Minority Oversampling Technique Based on Harris Hawk Optimization
    Raslan, Khaled S. H.
    Alsharkawy, Almohammady S.
    Raslan, K. R.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 442 - 453