Stably Calabi-Yau algebras and skew group algebras

被引:0
作者
XiaoLan Yu
DiMing Lu
机构
[1] Zhejiang University,Department of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
selfinjective algebra; stably Calabi-Yau algebra; skew group algebra; 16G10; 16D50; 16E05; 16S35;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and A be a finite-dimensional selfinjective algebra over an algebraically closed field. Suppose A is a left G-module algebra. Some sufficient conditions for the skew group algebra AG to be stably Calabi-Yau are provided, and some new examples of stably Calabi-Yau algebras are given as well.
引用
收藏
页码:1343 / 1356
页数:13
相关论文
共 26 条
  • [1] Asashiba H.(1999)The derived equivalence classification of representation-finite selfinjective algebras J Algebra 214 182-221
  • [2] Butler M. C. R.(1999)Minimal resolutions of algebras J Algebra 212 323-362
  • [3] King A. D.(2007)Calabi-Yau stable module categories of finite type Colloq Math 109 257-269
  • [4] Bialkowski J.(2008)Graded Calabi-Yau algebras of dimension 3 J Pure Appl Algebra 212 14-32
  • [5] Skowroński A.(2002)Periodic algebras which are almost Koszul Algebr Represent Theory 5 331-367
  • [6] Bocklandt R.(2006)Tilting theory and cluster combinatorics Adv Math 204 572-618
  • [7] Brenner S.(2007)Topological conformal field theories and Calabi-Yau categories Adv Math 210 165-214
  • [8] Butler M. C. R.(2009)Calabi-Yau objects in triangulated categories Trans Amer Math Soc 361 6501-6519
  • [9] King A. D.(2006)The stable Calabi-Yau dimension of tame symmetric algebras J Math Soc Japan 58 97-128
  • [10] Buan A.(1991)Auslander-Reiten triangles in derived categories of finite dimensional algebras Proc Amer Math Soc 112 641-648