The study of an infinite class of dendrimer nanostars by topological index approaches

被引:4
作者
Ashrafi A.R. [1 ]
Mirzargar M. [1 ]
机构
[1] Institute of Nanoscience and Nanotechnology, University of Kashan
关键词
Dendrimer nanostar; Edge Szeged index; PI index; Szeged index;
D O I
10.1007/s12190-008-0211-8
中图分类号
学科分类号
摘要
A topological index for a molecular graph G is a numeric quantity invariant under automorphisms of G. A dendrimer is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this article an infinite class of dendrimer nanostars is investigated under three topological indices containing PI, Szeged and edge Szeged. © 2008 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:289 / 294
页数:5
相关论文
共 34 条
[1]  
Diudea M.V., Katona G., Molecular topology of dendrimers, Adv. Dendritic Macromol., 4, (1999)
[2]  
Mathematical Chemistry, (1990)
[3]  
Trinajstic N., Chemical Graph Theory, (1992)
[4]  
Gutman I., Polansky O.E., Mathematical Concepts in Organic Chemistry, (1986)
[5]  
Topological Indices and Related Descriptors in QSAR and QSPR, (1999)
[6]  
Barysz M., Plavsic D., Trinajstic N., Note on topological indices, MATCH Commun. Math. Comput. Chem., 19, pp. 89-116, (1986)
[7]  
Johnson M.A., Maggiora G.M., Concepts and Applications of Molecular Similarity, (1990)
[8]  
Wiener H., Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69, pp. 17-20, (1947)
[9]  
Dobrynin A.A., Entringer R., Gutman I., Wiener index of trees: theory and applications, Acta Appl. Math., 66, pp. 211-249, (2001)
[10]  
Dobrynin A.A., Gutman I., Klavzar S., Zigert P., Wiener index of hexagonal systems, Acta Appl. Math., 72, pp. 247-294, (2002)