Order-to-topology continuous operators

被引:0
作者
Seyed AliReza Jalili
Kazem Haghnejad Azar
Mohammad Bagher Farshbaf Moghimi
机构
[1] University of Mohaghegh Ardabili,Department of Mathematics and Applications, Faculty of Sciences
来源
Positivity | 2021年 / 25卷
关键词
Vector lattice; Order-to-topology continuous operator; B-weakly compact operator; 47B65; 46B40; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
An operator T from vector lattice E into topological vector space (F,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F,\tau )$$\end{document} is said to be order-to-topology continuous whenever xα→o0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_\alpha \xrightarrow {o}0$$\end{document} implies Txα→τ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tx_\alpha \xrightarrow {\tau }0$$\end{document} for each (xα)α⊂E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_\alpha )_\alpha \subset E$$\end{document}. The collection of all order-to-topology continuous operators will be denoted by Loτ(E,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{o\tau }(E,F)$$\end{document}. In this paper, we will study some properties of this new class of operators. We will investigate the relationships between order-to-topology continuous operators and others classes of operators such as order continuous, order weakly compact and b-weakly compact operators. Under some sufficient and necessary conditions we show that the adjoint of order-to-norm continuous operators is also order-to-norm continuous and vice verse.
引用
收藏
页码:1313 / 1322
页数:9
相关论文
共 20 条
[1]  
Abramovich Y(2005)On order convergence of nets Positivity 9 287-292
[2]  
Sirotkin G(2019)On b-order Dunford-Pettis operators and the b-AM-compactness property Acta Math. Univ. Comenianae 1 67-76
[3]  
Alavizadeh R(2006)A note on Riesz spaces with property-b Czechosl. Math. J. 56 765-772
[4]  
Haghnejad Azar K(2007)A note on b-weakly compact operators Positivity 11 575-582
[5]  
Alpay Ş(2009)The duality problem for the class of b-weakly compact operators Positivity 13 683-692
[6]  
Altin B(2010)Some Characterizations of b-weakly compact operators on Banach lattices Math. Reports 62 315-324
[7]  
Tonyali C(2014)Unbounded order convergence in dual spaces J. Math. Anal. Appl. 419 347-354
[8]  
Alpay Ş(2017)uo-Convergence and its applications to Cesàro means in Banach lattices Isr. J. Math. 220 649-689
[9]  
Altin B(1977)Weak and unbounded order convergence in Banach lattices J. Austral. Math. Soc. Ser. A 24 312-319
[10]  
Aqzzouz B(undefined)undefined undefined undefined undefined-undefined