Thermal Conductivity and Viscosity of Aqueous K2SO4 Solutions at Temperatures from 298 to 575 K and at Pressures up to 30 MPa

被引:0
|
作者
I. M. Abdulagatov
N. D. Azizov
机构
[1] Institute for Geothermal Problems of the Dagestan Scientific Center of the Russian Academy of Sciences,Physical and Chemical Properties Division
[2] National Institute of Standards and Technology,undefined
[3] Azerbaijan State Oil Academy,undefined
来源
关键词
aqueous solution; capillary viscometer; coaxial-cylinder technique; potassium sulfate; thermal conductivity; -coefficient; viscosity; water;
D O I
暂无
中图分类号
学科分类号
摘要
The thermal conductivity of three (0.239, 0.499, and 0.782 mol·kg−1) and the viscosity of four (0.0658, 0.2055, 0.3050, and 0.4070 mol·kg−1) binary aqueous K2SO4 solutions have been measured with coaxial-cylinder (steady-state) and capillary-flow techniques, respectively. Measurements were made at pressures up to 30 MPa, and the range of temperature was 298–575 K. The total uncertainties of the thermal conductivity, viscosity, pressure, temperature, and composition measurements were estimated to be less than 2%, 1.6%, 0.05%, 30 mK, and 0.02%, respectively. The measured values of the thermal conductivity and viscosity of K2SO4 (aq) were compared with data and correlations reported in the literature. The reliability and accuracy of the experimental method was confirmed with measurements on pure water with well known (IAPWS standards) thermal conductivity and viscosity values (deviations, AAD, within 0.31 % and 0.52 %, respectively). The values of the viscosity A-, B-, and D-coefficients of the extended Jones–Dole equation for the relative viscosity (η/η0) of aqueous K2SO4 solutions as a function of temperature were studied. The maximum of the B-coefficient near 340 K has been found. The derived values of the viscosity A- and B-coefficients were compared with results predicted by the Falkenhagen–Dole theory of electrolyte solutions and calculated with the ionic B-coefficient data. The behavior of the concentration dependence of the relative viscosity of aqueous K2SO4 solutions is discussed in terms of the modern theory of transport phenomena in electrolyte solutions.
引用
收藏
页码:593 / 635
页数:42
相关论文
共 50 条
  • [1] Thermal conductivity and viscosity of aqueous K2SO4 solutions at temperatures from 298 to 575K and at pressures up to 30 MPa
    Abdulagatov, IM
    Azizov, ND
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2005, 26 (03) : 593 - 635
  • [2] Viscosity for aqueous Li2SO4 solutions at temperatures from 298 to 575 K and at pressures up to 30 MPa
    Abdulagatov, MM
    Azizov, ND
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2003, 48 (06): : 1549 - 1556
  • [3] Densities and apparent molar volumes of Na2SO4(aq) and K2SO4(aq) at temperatures from 298 K to 573 K and at pressures up to 30 MPa
    Obsil, M
    Majer, V
    Hefter, GT
    Hynek, V
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1997, 42 (01): : 137 - 142
  • [4] Viscosity of the aqueous Ca(NO3)2 solutions at temperatures from 298 to 573 K and at pressures up to 40 MPa
    Abdulagatov, IM
    Zeinalova, AA
    Azizov, ND
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (05): : 1444 - 1450
  • [5] Viscosities of aqueous LiNO3 solutions at temperatures from 298 to 573 K and at pressures up to 30 MPa
    Abdulagatov, M
    Azizov, ND
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (02) : 416 - 425
  • [6] Viscosity of aquesous Na2SO4 solutions at tempertures from 298 to 573 K and at pressures up to 40 MPa
    Abdulagatov, IM
    Zeinalova, A
    Azizov, ND
    FLUID PHASE EQUILIBRIA, 2005, 227 (01) : 57 - 70
  • [7] Volumes of MgCl2(aq) at temperatures from 298 K to 623 K and pressures up to 30 MPa
    Obsil, M
    Majer, V
    Hefter, GT
    Hynek, V
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1997, 29 (05): : 575 - 593
  • [9] The pH of CO2 -saturated aqueous KCl solutions at temperatures between 298 K and 423 K at pressures up to 13.5 MPa
    Mutailipu, Meiheriayi
    Liu, Yu
    Song, Yongchen
    Trusler, J. P. Martin
    CHEMICAL ENGINEERING SCIENCE, 2021, 234
  • [10] Viscosity and Density of Aqueous Solutions of Carbon Dioxide at Temperatures from (274 to 449) K and at Pressures up to 100 MPa
    McBride-Wright, Mark
    Maitland, Geoffrey C.
    Trusler, J. P. Martin
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (01): : 171 - 180