Quadratic expansions and partial regularity for fully nonlinear uniformly parabolic equations

被引:0
|
作者
Jean-Paul Daniel
机构
[1] UPMC Université Paris 06,Laboratoire Jacques
[2] UMR 7598,Louis Lions
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 54卷
关键词
35B65; 35K55; 35D40; 49N60;
D O I
暂无
中图分类号
学科分类号
摘要
For a parabolic equation associated to a uniformly elliptic operator, we obtain a W3,ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{3, \varepsilon }$$\end{document} estimate, which provides a lower bound on the Lebesgue measure of the set on which a viscosity solution has a quadratic expansion. The argument combines parabolic W2,ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{2,\varepsilon }$$\end{document} estimates with a comparison principle argument. As an application, we show, assuming the operator is C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, that a viscosity solution is C2,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{2,\alpha }$$\end{document} on the complement of a closed set of Hausdorff dimension ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} less than that of the ambient space, where the constant ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} depends only on the dimension and the ellipticity.
引用
收藏
页码:183 / 216
页数:33
相关论文
共 50 条