Parametric and nonparametric tests for speckled imagery

被引:0
作者
Renato J. Cintra
Alejandro C. Frery
Abraão D. C. Nascimento
机构
[1] Universidade Federal de Pernambuco,Departamento de Estatística
[2] Cidade Universitária,CPMAT & LCCV, Instituto de Computação
[3] Universidade Federal de Alagoas,Graduate Program in Statistics
[4] Universidade Federal de Pernambuco,undefined
来源
Pattern Analysis and Applications | 2013年 / 16卷
关键词
Robust statistics; Information theory; Nonparametric methods; Parametric inference;
D O I
暂无
中图分类号
学科分类号
摘要
Synthetic aperture radar (SAR) has a pivotal role as a remote imaging method. Obtained by means of coherent illumination, SAR images are contaminated with speckle noise. The statistical modeling of such contamination is well described according to the multiplicative model and its implied \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{G}^0$$\end{document} distribution. The understanding of SAR imagery and scene element identification is an important objective in the field. In particular, reliable image contrast tools are sought. Aiming the proposition of new tools for evaluating SAR image contrast, we investigated new methods based on stochastic divergence. We propose several divergence measures specifically tailored for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{G}^0$$\end{document} distributed data. We also introduce a nonparametric approach based on the Kolmogorov–Smirnov distance for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{G}^0$$\end{document} data. We devised and assessed tests based on such measures, and their performances were quantified according to their test sizes and powers. Using Monte Carlo simulation, we present a robustness analysis of test statistics and of maximum likelihood estimators for several degrees of innovative contamination. It was identified that the proposed tests based on triangular and arithmetic-geometric measures outperformed the Kolmogorov–Smirnov methodology.
引用
收藏
页码:141 / 161
页数:20
相关论文
共 122 条
[1]  
Allende H(2006)M-estimators with asymmetric influence functions: The GA0 distribution case J Stat Comput Simul 76 941-956
[2]  
Frery AC(2009)On the geometry of generalized Gaussian distributions Journal of Multivariate Analysis 100 777-793
[3]  
Galbiati J(2009)Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery IEEE Transactions on Geoscience and Remote Sensing 47 3795-3809
[4]  
Pizarro L(2002)M-estimators of roughness and scale for GA0-modelled SAR imagery EURASIP Journal on Applied Signal Processing 2002 105-114
[5]  
Andai A(2002)Improved estimation of clutter properties in speckled imagery Computational Statistics & Data Analysis 40 801-824
[6]  
Anfinsen SN(1999)R: yet another econometric programming environment Journal of Applied Econometrics 14 319-329
[7]  
Doulgeris AP(1993)Parametric and nonparametric edge detection for speckle degraded images Optical Engineering 32 1935-1946
[8]  
Eltoft T(1972)Outliers in time series Journal of the Royal Statistical Society. Series B (Methodological) 34 350-363
[9]  
Bustos OH(2005)The polarimetric Environmetrics 16 13-31
[10]  
Lucini MM(2007) distribution for SAR data analysis IEEE Transactions on Geoscience and Remote Sensing 45 3098-3109