Comments on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (2, 2) supersymmetry on two-manifolds

被引:0
作者
Cyril Closset
Stefano Cremonesi
机构
[1] Stony Brook University,Simons Center for Geometry and Physics
[2] Theoretical Physics Group,undefined
[3] Imperial College London,undefined
关键词
Field Theories in Lower Dimensions; Supersymmetric gauge theory; Topological Field Theories; Sigma Models;
D O I
10.1007/JHEP07(2014)075
中图分类号
学科分类号
摘要
We study curved-space rigid supersymmetry for two-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (2, 2) supersymmetric fields theories with a vector-like R-symmetry by coupling such theories to background supergravity. The associated Killing spinors can be viewed as holomorphic sections of particular complex line bundles over Euclidean space-time, which severely restricts the allowed supersymmetric couplings on compact orientable Riemann surfaces without boundaries. For genus g > 1, the only consistent non-singular couplings are the ones dictated by the topological A-twist. On spaces with S2 topology, there exist additional supersymmetric backgrounds with m = 0 or ±1 unit of flux for the R-symmetry gauge field. The m = −1 case includes the Ω-background on the sphere. We also systematically work out the curved-space supersymmetry multiplets and supersymmetric Lagrangians.
引用
收藏
相关论文
共 95 条
  • [1] Doroud N(2013)Exact Results in D = 2 Supersymmetric Gauge Theories JHEP 05 093-undefined
  • [2] Gomis J(2013)Exact Kähler Potential from Gauge Theory and Mirror Symmetry JHEP 04 019-undefined
  • [3] Le Floch B(2014)Two-Sphere Partition Functions and Gromov-Witten Invariants Commun. Math. Phys. 325 1139-undefined
  • [4] Lee S(2013)The Seiberg-Witten Kähler Potential as a Two-Sphere Partition Function JHEP 01 142-undefined
  • [5] Gomis J(2014)Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups Lett. Math. Phys. 104 465-undefined
  • [6] Lee S(2011)Rigid Supersymmetric Theories in Curved Superspace JHEP 06 114-undefined
  • [7] Jockers H(2011)N=1 σ-models in AdS JHEP 12 042-undefined
  • [8] Kumar V(2012)Exploring Curved Superspace JHEP 08 141-undefined
  • [9] Lapan JM(2012)Supersymmetry on Curved Spaces and Holography JHEP 08 061-undefined
  • [10] Morrison DR(2014)Supersymmetry in Lorentzian Curved Spaces and Holography Commun. Math. Phys. 327 577-undefined