A Berry-Esseen type inequality for convex bodies with an unconditional basis

被引:2
作者
Bo’az Klartag
机构
[1] Princeton University,Department of Mathematics
来源
Probability Theory and Related Fields | 2009年 / 145卷
关键词
60F05; 52A20; 52A38; 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose X = (X1, . . . , Xn) is a random vector, distributed uniformly in a convex body \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K \subset \mathbb R^n}$$\end{document} . We assume the normalization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb E X_i^2 = 1}$$\end{document} for i = 1, . . . , n. The body K is further required to be invariant under coordinate reflections, that is, we assume that (±X1, . . . , ±Xn) has the same distribution as (X1, . . . , Xn) for any choice of signs. Then, we show that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb E \left( \, |X| - \sqrt{n} \, \right)^2 \leq C^2,$$\end{document}where C  ≤  4 is a positive universal constant, and | · | is the standard Euclidean norm in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R^n}$$\end{document} . The estimate is tight, up to the value of the constant. It leads to a Berry-Esseen type bound in the central limit theorem for unconditional convex bodies.
引用
收藏
页码:1 / 33
页数:32
相关论文
共 44 条
[1]  
Anttila M.(2003)The central limit problem for convex bodies Trans. Amer. Math. Soc. 355 4723-4735
[2]  
Ball K.(1999)On the “hot spots” conjecture of J. Rauch J. Funct. Anal. 164 1-33
[3]  
Perissinaki I.(2003)Extremal slabs in the cube and the Laplace transform Adv. Math. 174 89-114
[4]  
Bañuelos R.(2003)On concentration of distributions of random weighted sums Ann. Prob. 31 195-215
[5]  
Burdzy K.(2003)Large deviations of typical linear functionals on a convex body with unconditional basis Stochastic inequalities and applications, Progr Probab Birkhäuser 56 3-13
[6]  
Barthe F.(2000)Asymptotics of cross sections for convex bodies Beiträge Algebra Geom. 41 437-454
[7]  
Koldobsky A.(1987)Polar decomposition and increasing rearrangement of vector fields C. R. Acad. Sci. Paris Sér. I Math. 305 805-808
[8]  
Bobkov S.G.(2004)The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems J. Funct. Anal. 214 410-427
[9]  
Bobkov S.G.(2002)On a variant of Korn’s inequality arising in statistical mechanics. A tribute to J. L. Lions ESAIM Control Optim. Calc. Var. 8 603-619
[10]  
Nazarov F.L.(2007)A stability result for mean width of Adv. Math. 214 865-877