Tubular Structures of Compact Symmetric Spaces Associated with the Exceptional Lie Group F4

被引:0
作者
Balázs Csikós
László Verhóczki
机构
[1] Eötvös University,Department of Geometry
来源
Geometriae Dedicata | 2004年 / 109卷
关键词
Lie group; Riemannian symmetric space; isometric action; orbit; principal curvature; volume.;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we discuss in detail cohomogeneity one isometric actions on the compact symmetric spaces F4 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{4}\backslash({\rm Sp}(3)\,\times\, {\rm Sp}(1)\backslash {\mathbb Z} _2)$$\end{document} . By means of isometric actions we show that these symmetric spaces have got well-defined tubular structures around the totally geodesic submanifolds Spin(9) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^+_4({\mathbb R}^9)$$\end{document} , respectively. Therefore these symmetric spaces can be thought of as compact tubes. The radii of the tubes and the principal curvatures of the tubular hypersurfaces are determined in explicit form. Moreover, we apply these results to compute the volumes of the principal orbits and the volumes of the symmetric spaces associated with the compact Lie group F4.
引用
收藏
页码:239 / 252
页数:13
相关论文
共 14 条
[1]  
Abe K.(1997)Volumes of compact symmetric spaces Tokyo J. Math 20 87-105
[2]  
Yokota I.(1987)Volumes of subgroups of compact Lie groups Algebras Groups Geom 4 325-364
[3]  
Broughton S.A.(1971)Variational completeness and K-transversal domains J Differential Geom 5 135-147
[4]  
Conlon L.(1981)The volumes of tubes in a Riemannian manifold Rend. Sem.Mat. Univ. Politec. Torino 39 1-50
[5]  
Gray A.(1960)Variational completeness for compact symmetric spaces Proc. Amer. Math.Soc 11 544-546
[6]  
Vanhecke L.(1962)Totally geodesic orbits of groups of isometries Nederl. Akad. Wetensch 65 291-298
[7]  
Hermann R.(2002)A classification of hyperpolar and cohomogeneity one actions Trans. Amer.Math. Soc 354 571-612
[8]  
Hermann R.(1997)The volume of geodesic balls and tubes about totally geodesic submanifolds in compact symmetric spaces Differential Geom. Appl 7 101-113
[9]  
Kollross A.(1986)Some isometric actions with orthogonally transversal submanifolds on Riemannian symmetric spaces Studia Sci. Math. Hung 21 175-179
[10]  
Naveira A.M.(1988)Geometry in normal and tubular neighborhoods Rend. Sem. Fac. Sci. Univ. Cagliari Suppl. al vol 58 73-176