Sequences of nodal solutions for critical double phase problems with variable exponents

被引:8
作者
Papageorgiou, Nikolaos S. [1 ]
Vetro, Francesca [2 ]
Winkert, Patrick [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 03期
关键词
Critical problem; Double phase operator; Existence results; Multiple solutions; Nodal solutions; Sign-changing solutions; Variable exponent; ELLIPTIC-EQUATIONS; EXISTENCE; FUNCTIONALS; REGULARITY; UNIQUENESS; CALCULUS;
D O I
10.1007/s00033-024-02226-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a double phase problem with both variable exponents. Such problem has a reaction consisting of a Carath & eacute;odory perturbation defined only locally and of a critical term. The presence of the critical term does not permit to use results of the critical point theory for the corresponding energy functional. Consequently, using suitable cut-off functions and truncation techniques we focus on an auxiliary coercive problem on which, differently from our main problem, we can act with variational tools. In this way, we are able to produce a sequence of sign-changing solutions to our main problem converging to 0 in L infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }$$\end{document} and in the Musielak-Orlicz Sobolev space.
引用
收藏
页数:17
相关论文
共 42 条
[1]   Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold [J].
Aberqi, Ahmed ;
Bennouna, Jaouad ;
Benslimane, Omar ;
Ragusa, Maria Alessandra .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
[2]   Gradient and Parameter Dependent Dirichlet (p (x), q (x)) -Laplace Type Problem [J].
Albalawi, Kholoud Saad ;
Alharthi, Nadiyah Hussain ;
Vetro, Francesca .
MATHEMATICS, 2022, 10 (08)
[3]   Double phase problems with variable growth and convection for the Baouendi-Grushin operator [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06)
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[7]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[8]   Nehari manifold approach for superlinear double phase problems with variable exponents [J].
Crespo-Blanco, Angel ;
Winkert, Patrick .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) :605-634
[9]   A new class of double phase variable exponent problems: Existence and uniqueness [J].
Crespo-Blanco, Angel ;
Gasinski, Leszek ;
Harjulehto, Petteri ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 :182-228
[10]   Lipschitz Bounds and Nonautonomous Integrals [J].
De Filippis, Cristiana ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (02) :973-1057