Sequences of nodal solutions for critical double phase problems with variable exponents

被引:5
作者
Papageorgiou, Nikolaos S. [1 ]
Vetro, Francesca [2 ]
Winkert, Patrick [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 03期
关键词
Critical problem; Double phase operator; Existence results; Multiple solutions; Nodal solutions; Sign-changing solutions; Variable exponent; ELLIPTIC-EQUATIONS; EXISTENCE; FUNCTIONALS; REGULARITY; UNIQUENESS; CALCULUS;
D O I
10.1007/s00033-024-02226-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a double phase problem with both variable exponents. Such problem has a reaction consisting of a Carath & eacute;odory perturbation defined only locally and of a critical term. The presence of the critical term does not permit to use results of the critical point theory for the corresponding energy functional. Consequently, using suitable cut-off functions and truncation techniques we focus on an auxiliary coercive problem on which, differently from our main problem, we can act with variational tools. In this way, we are able to produce a sequence of sign-changing solutions to our main problem converging to 0 in L infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }$$\end{document} and in the Musielak-Orlicz Sobolev space.
引用
收藏
页数:17
相关论文
共 42 条
  • [1] Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold
    Aberqi, Ahmed
    Bennouna, Jaouad
    Benslimane, Omar
    Ragusa, Maria Alessandra
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [2] Gradient and Parameter Dependent Dirichlet (p (x), q (x)) -Laplace Type Problem
    Albalawi, Kholoud Saad
    Alharthi, Nadiyah Hussain
    Vetro, Francesca
    [J]. MATHEMATICS, 2022, 10 (08)
  • [3] Double phase problems with variable growth and convection for the Baouendi-Grushin operator
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    Winkert, Patrick
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [4] NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES
    Baroni, P.
    Colombo, M.
    Mingione, G.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 347 - 379
  • [5] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [6] Harnack inequalities for double phase functionals
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 206 - 222
  • [7] Eigenvalues for double phase variational integrals
    Colasuonno, Francesca
    Squassina, Marco
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 1917 - 1959
  • [8] Nehari manifold approach for superlinear double phase problems with variable exponents
    Crespo-Blanco, Angel
    Winkert, Patrick
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) : 605 - 634
  • [9] A new class of double phase variable exponent problems: Existence and uniqueness
    Crespo-Blanco, Angel
    Gasinski, Leszek
    Harjulehto, Petteri
    Winkert, Patrick
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 : 182 - 228
  • [10] Lipschitz Bounds and Nonautonomous Integrals
    De Filippis, Cristiana
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (02) : 973 - 1057