Corona Theorem for the Dirichlet-Type Space

被引:0
|
作者
Shuaibing Luo
机构
[1] Hunan University,School of Mathematics, and Hunan Provincial Key Laboratory of Intelligent information processing and Applied Mathematics
来源
关键词
Corona problem; Dirichlet-type space; multiplier algebra; Cauchy duality; complete Nevanlinna–Pick space.; 30H05; 30H80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper utilizes Cauchy’s transform and duality for the Dirichlet-type space D(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\mu )$$\end{document} with positive superharmonic weight Uμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\mu $$\end{document} on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} to establish the corona theorem for the Dirichlet-type multiplier algebra M(D(μ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\big (D(\mu )\big )$$\end{document} that: if {f1,...,fn}⊆M(D(μ))andinfz∈D∑j=1n|fj(z)|>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \{f_1,...,f_n\}\subseteq M\big (D(\mu )\big )\quad \text {and}\quad \inf _{z\in \mathbb {D}}\sum _{j=1}^n|f_j(z)|>0 \end{aligned}$$\end{document}then ∃{g1,...,gn}⊆M(D(μ))such that∑j=1nfjgj=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \exists \,\{g_1,...,g_n\}\subseteq M\big (D(\mu )\big )\quad \text {such that}\quad \sum _{j=1}^nf_jg_j=1, \end{aligned}$$\end{document}thereby generalizing Carleson’s corona theorem for M(H2)=H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(H^2)=H^\infty $$\end{document} in Carleson (Ann Math (2) 76, 547–559, 1962) and Xiao’s corona theorem for M(D)⊂H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathscr {D})\subset H^\infty $$\end{document} in Xiao (Manuscr Math 97, 217–232, 1998) thanks to D(μ)=Hardy spaceH2asdμ(z)=(1-|z|2)dA(z)∀z∈D;Dirichlet spaceDasdμ(z)=|dz|∀z∈T=∂D.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(\mu )={\left\{ \begin{array}{ll} \text {Hardy space}\ H^2\quad &{}\text {as}\quad \text {d}\mu (z)=(1-|z|^2)\,\text {d}A(z)\quad \forall \ z\in \mathbb {D};\\ \text {Dirichlet space}\; \mathscr {D}\ &{}\text {as}\quad \text {d}\mu (z)=|\text {d}z|\quad \forall \ z\in \mathbb {T}=\partial {\mathbb {D}}. \end{array}\right. } \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [21] Weighted Dirichlet-type inequalities for Steiner symmetrization
    F. Brock
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 15 - 25
  • [22] Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces
    Ardebili, Fariba Alighadr
    Vaezi, Hamid
    Hassanlou, Mostafa
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 519 - 534
  • [23] Cyclicity in Dirichlet-type spaces and extremal polynomials
    Catherine Bénéteau
    Alberto A. Condori
    Constanze Liaw
    Daniel Seco
    Alan A. Sola
    Journal d'Analyse Mathématique, 2015, 126 : 259 - 286
  • [24] Weighted Dirichlet-type inequalities for Steiner symmetrization
    Brock, F
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (01) : 15 - 25
  • [25] Generalized Cesaro Operators on Dirichlet-Type Spaces
    Jin, Jianjun
    Tang, Shuan
    ACTA MATHEMATICA SCIENTIA, 2021, 42 (1) : 212 - 220
  • [26] CYCLICITY IN DIRICHLET-TYPE SPACES AND EXTREMAL POLYNOMIALS
    Beneteau, Catherine
    Condori, Alberto A.
    Liaw, Constanze
    Seco, Daniel
    Sola, Alan A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 126 (01): : 259 - 286
  • [27] A Coburn type theorem for Toeplitz operators on the Dirichlet space
    Lee, Young Joo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 237 - 242
  • [28] Dirichlet-Type Problems for Certain Beltrami Equations
    J. Bory-Reyes
    D. Barseghyan
    B. Schneider
    Mediterranean Journal of Mathematics, 2021, 18
  • [29] Radial variation of functions in Dirichlet-type spaces
    Twomey, JB
    MATHEMATIKA, 1997, 44 (88) : 267 - 277
  • [30] CARLESON MEASURES AND MULTIPLIERS OF DIRICHLET-TYPE SPACES
    KERMAN, R
    SAWYER, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (01) : 87 - 98