Corona Theorem for the Dirichlet-Type Space

被引:0
|
作者
Shuaibing Luo
机构
[1] Hunan University,School of Mathematics, and Hunan Provincial Key Laboratory of Intelligent information processing and Applied Mathematics
来源
关键词
Corona problem; Dirichlet-type space; multiplier algebra; Cauchy duality; complete Nevanlinna–Pick space.; 30H05; 30H80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper utilizes Cauchy’s transform and duality for the Dirichlet-type space D(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\mu )$$\end{document} with positive superharmonic weight Uμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\mu $$\end{document} on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} to establish the corona theorem for the Dirichlet-type multiplier algebra M(D(μ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\big (D(\mu )\big )$$\end{document} that: if {f1,...,fn}⊆M(D(μ))andinfz∈D∑j=1n|fj(z)|>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \{f_1,...,f_n\}\subseteq M\big (D(\mu )\big )\quad \text {and}\quad \inf _{z\in \mathbb {D}}\sum _{j=1}^n|f_j(z)|>0 \end{aligned}$$\end{document}then ∃{g1,...,gn}⊆M(D(μ))such that∑j=1nfjgj=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \exists \,\{g_1,...,g_n\}\subseteq M\big (D(\mu )\big )\quad \text {such that}\quad \sum _{j=1}^nf_jg_j=1, \end{aligned}$$\end{document}thereby generalizing Carleson’s corona theorem for M(H2)=H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(H^2)=H^\infty $$\end{document} in Carleson (Ann Math (2) 76, 547–559, 1962) and Xiao’s corona theorem for M(D)⊂H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathscr {D})\subset H^\infty $$\end{document} in Xiao (Manuscr Math 97, 217–232, 1998) thanks to D(μ)=Hardy spaceH2asdμ(z)=(1-|z|2)dA(z)∀z∈D;Dirichlet spaceDasdμ(z)=|dz|∀z∈T=∂D.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(\mu )={\left\{ \begin{array}{ll} \text {Hardy space}\ H^2\quad &{}\text {as}\quad \text {d}\mu (z)=(1-|z|^2)\,\text {d}A(z)\quad \forall \ z\in \mathbb {D};\\ \text {Dirichlet space}\; \mathscr {D}\ &{}\text {as}\quad \text {d}\mu (z)=|\text {d}z|\quad \forall \ z\in \mathbb {T}=\partial {\mathbb {D}}. \end{array}\right. } \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Corona Theorem for the Dirichlet-Type Space
    Luo, Shuaibing
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [2] Characterizations of the Dirichlet-Type Space
    Liu, Xiaosong
    Chacn, Gerardo R.
    Lou, Zengjian
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (06) : 1269 - 1286
  • [3] Characterizations of the Dirichlet-Type Space
    Xiaosong Liu
    Gerardo R. Chacón
    Zengjian Lou
    Complex Analysis and Operator Theory, 2015, 9 : 1269 - 1286
  • [4] A Corona Theorem for Multipliers on Dirichlet Space
    Tavan T. Trent
    Integral Equations and Operator Theory, 2004, 49 : 123 - 139
  • [5] A corona theorem for multipliers on Dirichlet space
    Trent, TT
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 49 (01) : 123 - 139
  • [6] MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE
    Li, Songxiao
    Lou, Zengjian
    Shen, Conghui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 429 - 441
  • [7] Generalized Hilbert operator on the Dirichlet-type space
    Li, Songxiao
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 304 - 309
  • [8] Toeplitz Operators on Dirichlet-Type Space of Unit Ball
    Xia, Jin
    Wang, Xiaofeng
    Cao, Guangfu
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] Riemann-Stieltjes operators from Dirichlet-type space to Bloch-type space
    Li, Songxiao
    Journal of the Indian Institute of Science, 2006, 86 (06) : 773 - 783
  • [10] CARLESON MEASURES ON DIRICHLET-TYPE SPACES
    Chacon, Gerardo R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) : 1605 - 1615