Asymptotic Behaviour of Christoffel–Darboux Kernel Via Three-Term Recurrence Relation I

被引:0
作者
Grzegorz Świderski
Bartosz Trojan
机构
[1] KU Leuven,Department of Mathematics
[2] University of Wrocław,Mathematical Institute
[3] Polish Academy of Sciences,Institute of Mathematics
来源
Constructive Approximation | 2021年 / 54卷
关键词
Orthogonal polynomials; Asymptotics; Christoffel functions; Scaling limits; Primary: 42C05; 47B36;
D O I
暂无
中图分类号
学科分类号
摘要
For Jacobi parameters belonging to one of three classes: asymptotically periodic, periodically modulated, and the blend of these two, we study the asymptotic behavior of the Christoffel functions and the scaling limits of the Christoffel–Darboux kernel. We assume regularity of Jacobi parameters in terms of the Stolz class. We emphasize that the first class only gives rise to measures with compact supports.
引用
收藏
页码:49 / 116
页数:67
相关论文
共 35 条
[1]  
Boutet de Monvel A(2011)Unbounded Jacobi matrices with a few gaps in the essential spectrum: constructive examples Integral Equ. Oper. Theory 69 151-170
[2]  
Janas J(1978)Quasitriangular matrices Proc. Am. Math. Soc. 69 95-96
[3]  
Naboko S(2016)Asymptotic behaviour of some families of orthonormal polynomials and an associated Hilbert space J. Approx. Theory 210 41-79
[4]  
Dombrowski J(2002)Spectral analysis of selfadjoint Jacobi matrices with periodically modulated entries J. Funct. Anal. 191 318-342
[5]  
Ignjatović A(2004)The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on Adv. Math. 188 337-398
[6]  
Janas J(2002)Universality for eigenvalue correlations from the modified Jacobi unitary ensemble Int. Math. Res. Not. 2002 1575-1600
[7]  
Naboko S(2008)Universality limits in the bulk for varying measures Adv. Math. 219 743-779
[8]  
Kuijlaars ABJ(2009)Universality limits for exponential weights Constr. Approx. 29 247-275
[9]  
McLaughlin KT-R(2009)A new approach to universality limits involving orthogonal polynomials Ann. Math. 170 915-939
[10]  
Van Assche W(1991)Szegö’s extremum problem on the unit circle Ann. Math. (2) 134 433-453