Evidence for isotropic s-wave superconductivity in high-entropy alloys

被引:0
|
作者
Casey K. W. Leung
Xiaofu Zhang
Fabian von Rohr
Rolf Lortz
Berthold Jäck
机构
[1] The Hong Kong University of Science and Technology,Department of Physics
[2] Chinese Academy of Sciences (CAS),State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology
[3] CAS Center for Excellence in Superconducting Electronics,Department of Chemistry
[4] Universiät Zürich,IAS Center for Quantum Technologies
[5] The Hong Kong University of Science and Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
High-entropy alloys (HEA) form through the random arrangement of five or more chemical elements on a crystalline lattice. Despite the significant amount of resulting compositional disorder, a subset of HEAs enters a superconducting state below critical temperatures, Tc<10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\text{c}}<10\,$$\end{document} K. The superconducting properties of the known HEAs seem to suffice a Bardeen–Cooper–Schrieffer (BCS) description, but little is known about their superconducting order parameter and the microscopic role of disorder. We report on magnetic susceptibility measurements on films of the superconducting HEA (TaNb)1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}(ZrHfTi)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{x}$$\end{document} for characterizing the lower and upper critical fields Hc,1(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\text{c,1}}(T)$$\end{document} and Hc,2(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\text{c,2}}(T)$$\end{document}, respectively as a function of temperature T. Our resulting analysis of the Ginzburg–Landau coherence length and penetration depth demonstrates that HEAs of this type are single-band isotropic s-wave superconductors in the dirty limit. Despite a significant difference in the elemental composition between the x=0.35\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.35$$\end{document} and x=0.71\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.71$$\end{document} films, we find that the observed Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\text{c}}$$\end{document} variations cannot be explained by disorder effects.
引用
收藏
相关论文
共 50 条
  • [21] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2014, 66 (10) : 1964 - 1965
  • [22] Nanocrystalline high-entropy alloys
    Koch, Carl C.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (18) : 3435 - 3444
  • [23] An overview of high-entropy alloys
    Ibrahim, Pshdar Ahmed
    Ozkul, Iskender
    Canbay, Canan Aksu
    EMERGENT MATERIALS, 2022, 5 (06) : 1779 - 1796
  • [24] High-entropy alloys.
    Kozak, Roksolana
    Steurer, Walter
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 : S497 - S497
  • [25] Orientational high-entropy alloys
    Kumar, Nitesh
    Subramaniam, Anandh
    PHILOSOPHICAL MAGAZINE LETTERS, 2014, 94 (12) : 749 - 754
  • [26] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2013, 65 (12) : 1749 - 1750
  • [27] An overview of high-entropy alloys
    Pshdar Ahmed Ibrahim
    İskender Özkul
    Canan Aksu Canbay
    Emergent Materials, 2022, 5 : 1779 - 1796
  • [28] Refractory high-entropy alloys
    Senkov, O. N.
    Wilks, G. B.
    Miracle, D. B.
    Chuang, C. P.
    Liaw, P. K.
    INTERMETALLICS, 2010, 18 (09) : 1758 - 1765
  • [29] Application of High-Entropy Alloys
    Gromov V.E.
    Shlyarova Y.A.
    Konovalov S.V.
    Vorob’ev S.V.
    Peregudov O.A.
    Steel in Translation, 2021, 51 (10) : 700 - 704
  • [30] Evidence-based recommender system for high-entropy alloys
    Minh-Quyet Ha
    Duong-Nguyen Nguyen
    Viet-Cuong Nguyen
    Nagata, Takahiro
    Chikyow, Toyohiro
    Kino, Hiori
    Miyake, Takashi
    Denoeux, Thierry
    Van-Nam Huynh
    Dam, Hieu-Chi
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (07): : 470 - 478