A large margin time series nearest neighbour classification under locally weighted time warps

被引:0
|
作者
Jidong Yuan
Ahlame Douzal-Chouakria
Saeed Varasteh Yazdi
Zhihai Wang
机构
[1] Beijing Jiaotong University,School of Computer and Information Technology
[2] Univ. Grenoble,CNRS, Grenoble INP, LIG
来源
Knowledge and Information Systems | 2019年 / 59卷
关键词
Large margin classification; Time series; -Nearest neighbour; Metric learning; Weighted time warp; Temporal alignment;
D O I
暂无
中图分类号
学科分类号
摘要
Accuracy of the k-nearest neighbour (kNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\hbox {NN}$$\end{document}) classifier depends strongly on the ability of the used distance to induce k-nearest neighbours of the same class while keeping distant samples of different classes. For time series classification, kNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\hbox {NN}$$\end{document} based on dynamic time warping (dtw) measure remains among the most popular and competitive approaches. However, by assuming time series uniformly distributed, standard dtw may show some limitations to classify complex time series. In this paper, we show how to enhance the potential of kNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\hbox {NN}$$\end{document} under time warp measure by learning a locally weighted dynamic time warping. For that, first discriminative features are learned from the neighbourhoods, then used to weight time series elements to bring closer the k-nearest neighbours of the same class and move away the k-nearest neighbours of different classes. To evaluate the proposed method, a deep analysis and experimentation are conducted on 87 public datasets from different application domains, varying sizes and difficulty levels. The results obtained show significant improvement in the proposed weighted dtw for time series kNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\hbox {NN}$$\end{document} classification.
引用
收藏
页码:117 / 135
页数:18
相关论文
共 50 条
  • [21] Scalable time series classification
    Patrick Schäfer
    Data Mining and Knowledge Discovery, 2016, 30 : 1273 - 1298
  • [22] Early classification on time series
    Xing, Zhengzheng
    Pei, Jian
    Yu, Philip S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (01) : 105 - 127
  • [23] Scalable time series classification
    Schaefer, Patrick
    DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (05) : 1273 - 1298
  • [24] Early classification on time series
    Zhengzheng Xing
    Jian Pei
    Philip S. Yu
    Knowledge and Information Systems, 2012, 31 : 105 - 127
  • [25] Time series features and fuzzy memberships combination for time series classification
    Baldan, Francisco J.
    Martinez, Luis
    NEUROCOMPUTING, 2024, 606
  • [26] Flexible Dynamic Time Warping for Time Series Classification
    Hsu, Che-Jui
    Huang, Kuo-Si
    Yang, Chang-Biau
    Guo, Yi-Pu
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2838 - 2842
  • [27] Linguistic summaries of locally periodic time series
    Moyse, Gilles
    Lesot, Marie-Jeanne
    FUZZY SETS AND SYSTEMS, 2016, 285 : 94 - 117
  • [28] Detection of locally stationary segments in time series
    Ligges, U
    Weihs, C
    Hasse-Becker, P
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 285 - 290
  • [29] Recovering the delay time from time series applying the nearest-neighbor method
    V. I. Ponomarenko
    M. D. Prokhorov
    V. S. Khorev
    Technical Physics Letters, 2013, 39 : 683 - 686
  • [30] UNSUPERVISED TIME-SERIES CLASSIFICATION
    RAJAN, JJ
    RAYNER, PJW
    SIGNAL PROCESSING, 1995, 46 (01) : 57 - 74