CVD-HNet: Classifying Pneumonia and COVID-19 in Chest X-ray Images Using Deep Network

被引:0
|
作者
S. Suganyadevi
V. Seethalakshmi
机构
[1] KPR Institute of Engineering and Technology,Department of Electronics and Communication Engineering
来源
Wireless Personal Communications | 2022年 / 126卷
关键词
Deep learning; COVID 19; CNN; X-ray; Accuracy; Matthews correlation coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
The use of computer-assisted analysis to improve image interpretation has been a long-standing challenge in the medical imaging industry. In terms of image comprehension, Continuous advances in AI (Artificial Intelligence), predominantly in DL (Deep Learning) techniques, are supporting in the classification, Detection, and quantification of anomalies in medical images. DL techniques are the most rapidly evolving branch of AI, and it’s recently been successfully pragmatic in a variety of fields, including medicine. This paper provides a classification method for COVID 19 infected X-ray images based on new novel deep CNN model. For COVID19 specified pneumonia analysis, two new customized CNN architectures, CVD-HNet1 (COVID-HybridNetwork1) and CVD-HNet2 (COVID-HybridNetwork2), have been designed. The suggested method utilizes operations based on boundaries and regions, as well as convolution processes, in a systematic manner. In comparison to existing CNNs, the suggested classification method achieves excellent Accuracy 98 percent, F Score 0.99 and MCC 0.97. These results indicate impressive classification accuracy on a limited dataset, with more training examples, much better results can be achieved. Overall, our CVD-HNet model could be a useful tool for radiologists in diagnosing and detecting COVID 19 instances early.
引用
收藏
页码:3279 / 3303
页数:24
相关论文
共 50 条
  • [31] COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Lee, Yeon-Soo
    DIAGNOSTICS, 2022, 12 (02)
  • [32] A dataset of COVID-19 x-ray chest images
    Fraiwan, Mohammad
    Khasawneh, Natheer
    Khassawneh, Basheer
    Ibnian, Ali
    DATA IN BRIEF, 2023, 47
  • [33] RELIABLE COVID-19 DETECTION USING CHEST X-RAY IMAGES
    Degerli, Aysen
    Ahishali, Mete
    Kiranyaz, Serkan
    Chowdhury, Muhammad E. H.
    Gabbouj, Moncef
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 185 - 189
  • [34] Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images
    Chatterjee, Soumick
    Saad, Fatima
    Sarasaen, Chompunuch
    Ghosh, Suhita
    Krug, Valerie
    Khatun, Rupali
    Mishra, Rahul
    Desai, Nirja
    Radeva, Petia
    Rose, Georg
    Stober, Sebastian
    Speck, Oliver
    Nuernberger, Andreas
    JOURNAL OF IMAGING, 2024, 10 (02)
  • [35] Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
    Meem, Anika Tahsin
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1223 - 1240
  • [36] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EVOLVING SYSTEMS, 2022, 13 (04) : 519 - 533
  • [37] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    Gaber, Mohamed Medhat
    APPLIED INTELLIGENCE, 2021, 51 (02) : 854 - 864
  • [38] Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
    Sampen, Denilson
    Lavarello, Roberto
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [39] Fast Hybrid Deep Neural Network for Diagnosis of COVID-19 using Chest X-Ray Images
    Ali, Hussein Ahmed
    Zghal, Nadia Smaoui
    Hariri, Walid
    Ben Aissa, Dalenda
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 553 - 564
  • [40] COVID-19 detection in chest X-ray images using deep boosted hybrid learning
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Hassan, Mehdi
    Lee, Yeon Soo
    Alam, Jamshed
    Basit, Abdul
    Zubair, Saima
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137