Eigenvalue Asymptotics and a Trace Formula for a Fourth-Order Differential Operator

被引:0
作者
Dmitry M. Polyakov
机构
[1] Southern Mathematical Institute,
[2] Vladikavkaz Scientific Center of RAS,undefined
来源
Complex Analysis and Operator Theory | 2023年 / 17卷
关键词
Spectrum; Eigenvalue asymptotics; Trace formula; Fourth-order differential operator; 34L15; 34B09; 34E10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a self-adjoint fourth-order operator with real 1-periodic nonsmooth coefficients on the unit interval and the Neumann type boundary conditions. We determine eigenvalue asymptotics at high energy and a trace formula for this operator.
引用
收藏
相关论文
共 53 条
  • [1] Gupta CP(1990)Existence and uniqueness theorems for some fourth order fully quasilinear boundary value problems Appl. Anal. 36 157-169
  • [2] Peletier LA(2004)Homoclinic orbits to a saddle-center in a fourth-order differential equation J. Differ. Equ. 203 185-215
  • [3] Rodrigues JA(2004)Pattern selection of solutions of the Swift-Hohenberg equation Physica D. 194 95-126
  • [4] Peletier LA(2000)Periodic and homoclinic solutions of extended, Fisher–Kolmogorov equations C. R. Math. Acad. Sci. Paris. 331 287-292
  • [5] Rottschäfer V(1976)An inverse eigenvalue problem of order four SIAM J. Math. Anal. 7 646-661
  • [6] Tersian S(1978)An inverse eigenvalue problem of order four–an infinite case SIAM J. Math. Anal. 9 395-413
  • [7] Chaparova J(1998)Isospectral sets for fourth-order ordinary differential operators SIAM J. Math. Anal. 29 935-966
  • [8] McLaughlin JR(2003)Sampling for the fourth-order Sturm–Liouville differential operator J. Math. Anal. Appl. 278 542-550
  • [9] McLaughlin JR(2007)On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in the boundary conditions Differ. Equat. 43 905-915
  • [10] Caudill LF(2020)Convergence of eigenfunction expansions for a boundary value problem with spectral parameter in the boundary conditions II Differ. Equ. 56 277-289